Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import spaces | |
| # Model configuration | |
| MID = "apple/FastVLM-0.5B" | |
| IMAGE_TOKEN_INDEX = -200 | |
| # Load model and tokenizer (will be loaded on first GPU allocation) | |
| tok = None | |
| model = None | |
| def load_model(): | |
| global tok, model | |
| if tok is None or model is None: | |
| print("Loading model...") | |
| tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MID, | |
| torch_dtype=torch.float16, | |
| device_map="cuda", | |
| trust_remote_code=True, | |
| ) | |
| print("Model loaded successfully!") | |
| return tok, model | |
| def caption_image(image, custom_prompt=None): | |
| """ | |
| Generate a caption for the input image. | |
| Args: | |
| image: PIL Image from Gradio | |
| custom_prompt: Optional custom prompt to use instead of default | |
| Returns: | |
| Generated caption text | |
| """ | |
| if image is None: | |
| return "Please upload an image first." | |
| try: | |
| # Load model if not already loaded | |
| tok, model = load_model() | |
| # Convert image to RGB if needed | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| # Use custom prompt or default | |
| prompt = custom_prompt if custom_prompt else "Describe this image in detail." | |
| # Build chat message | |
| messages = [ | |
| {"role": "user", "content": f"<image>\n{prompt}"} | |
| ] | |
| # Render to string to place <image> token correctly | |
| rendered = tok.apply_chat_template( | |
| messages, add_generation_prompt=True, tokenize=False | |
| ) | |
| # Split at image token | |
| pre, post = rendered.split("<image>", 1) | |
| # Tokenize text around the image token | |
| pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids | |
| post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids | |
| # Insert IMAGE token id at placeholder position | |
| img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype) | |
| input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device) | |
| attention_mask = torch.ones_like(input_ids, device=model.device) | |
| # Preprocess image using model's vision tower | |
| px = model.get_vision_tower().image_processor( | |
| images=image, return_tensors="pt" | |
| )["pixel_values"] | |
| px = px.to(model.device, dtype=model.dtype) | |
| # Generate caption | |
| with torch.no_grad(): | |
| out = model.generate( | |
| inputs=input_ids, | |
| attention_mask=attention_mask, | |
| images=px, | |
| max_new_tokens=128, | |
| do_sample=False, # Deterministic generation | |
| temperature=1.0, | |
| ) | |
| # Decode and return the generated text | |
| generated_text = tok.decode(out[0], skip_special_tokens=True) | |
| # Extract only the assistant's response | |
| if "assistant" in generated_text: | |
| response = generated_text.split("assistant")[-1].strip() | |
| else: | |
| response = generated_text | |
| return response | |
| except Exception as e: | |
| return f"Error generating caption: {str(e)}" | |
| # Create Gradio interface | |
| with gr.Blocks(title="FastVLM Image Captioning") as demo: | |
| gr.Markdown( | |
| """ | |
| # 🖼️ FastVLM Image Captioning | |
| Upload an image to generate a detailed caption using Apple's FastVLM-0.5B model. | |
| You can use the default prompt or provide your own custom prompt. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image( | |
| type="pil", | |
| label="Upload Image", | |
| elem_id="image-upload" | |
| ) | |
| custom_prompt = gr.Textbox( | |
| label="Custom Prompt (Optional)", | |
| placeholder="Leave empty for default: 'Describe this image in detail.'", | |
| lines=2 | |
| ) | |
| with gr.Row(): | |
| clear_btn = gr.ClearButton([image_input, custom_prompt]) | |
| generate_btn = gr.Button("Generate Caption", variant="primary") | |
| with gr.Column(): | |
| output = gr.Textbox( | |
| label="Generated Caption", | |
| lines=8, | |
| max_lines=15, | |
| show_copy_button=True | |
| ) | |
| # Event handlers | |
| generate_btn.click( | |
| fn=caption_image, | |
| inputs=[image_input, custom_prompt], | |
| outputs=output | |
| ) | |
| # Also generate on image upload if no custom prompt | |
| image_input.change( | |
| fn=lambda img, prompt: caption_image(img, prompt) if img is not None and not prompt else None, | |
| inputs=[image_input, custom_prompt], | |
| outputs=output | |
| ) | |
| gr.Markdown( | |
| """ | |
| --- | |
| **Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B) | |
| **Note:** This Space uses ZeroGPU for dynamic GPU allocation. | |
| """ | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch( | |
| share=False, | |
| show_error=True, | |
| server_name="0.0.0.0", | |
| server_port=7860 | |
| ) |