from transformers import pipeline import gradio as gr from PIL import Image # Load dog breed classification model pipe = pipeline("image-classification", model="jhoppanne/Dogs-Breed-Image-Classification-V1") # Function to be used in Gradio def dog_breed_classifier(image): results = pipe(image) return {res["label"]: res["score"] for res in results} # Gradio Interface iface = gr.Interface( fn=dog_breed_classifier, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), title="Dog Breed Classifier", description="Upload a dog image to identify its breed." ) # Run the app iface.launch()