Spaces:
Runtime error
Runtime error
Commit
·
a5e6b9f
1
Parent(s):
3760ea6
update
Browse files- app.py +46 -10
- requirements.txt +5 -4
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import cv2
|
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import PIL
|
| 8 |
-
import spaces
|
| 9 |
import torch
|
| 10 |
from diffusers.models import ControlNetModel
|
| 11 |
from diffusers.utils import load_image
|
|
@@ -17,7 +17,16 @@ from style_template import styles
|
|
| 17 |
|
| 18 |
# global variable
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
STYLE_NAMES = list(styles.keys())
|
| 22 |
DEFAULT_STYLE_NAME = "Watercolor"
|
| 23 |
|
|
@@ -31,6 +40,7 @@ hf_hub_download(
|
|
| 31 |
local_dir="./checkpoints",
|
| 32 |
)
|
| 33 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
|
|
|
| 34 |
|
| 35 |
# Load face encoder
|
| 36 |
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
|
|
@@ -39,23 +49,49 @@ app.prepare(ctx_id=0, det_size=(640, 640))
|
|
| 39 |
# Path to InstantID models
|
| 40 |
face_adapter = "./checkpoints/ip-adapter.bin"
|
| 41 |
controlnet_path = "./checkpoints/ControlNetModel"
|
|
|
|
| 42 |
|
| 43 |
# Load pipeline
|
| 44 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
|
|
|
| 45 |
|
| 46 |
base_model_path = "wangqixun/YamerMIX_v8"
|
| 47 |
|
| 48 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
| 49 |
base_model_path,
|
| 50 |
controlnet=controlnet,
|
| 51 |
-
torch_dtype=torch.float16,
|
|
|
|
| 52 |
safety_checker=None,
|
| 53 |
feature_extractor=None,
|
| 54 |
)
|
| 55 |
-
pipe.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 57 |
-
pipe.image_proj_model.to("cuda")
|
| 58 |
-
pipe.unet.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
@@ -187,7 +223,7 @@ def check_input_image(face_image):
|
|
| 187 |
raise gr.Error("Cannot find any input face image! Please upload the face image")
|
| 188 |
|
| 189 |
|
| 190 |
-
|
| 191 |
def generate_image(
|
| 192 |
face_image_path,
|
| 193 |
pose_image_path,
|
|
@@ -369,14 +405,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 369 |
minimum=20,
|
| 370 |
maximum=100,
|
| 371 |
step=1,
|
| 372 |
-
value=
|
| 373 |
)
|
| 374 |
guidance_scale = gr.Slider(
|
| 375 |
label="Guidance scale",
|
| 376 |
minimum=0.1,
|
| 377 |
maximum=10.0,
|
| 378 |
step=0.1,
|
| 379 |
-
value=
|
| 380 |
)
|
| 381 |
seed = gr.Slider(
|
| 382 |
label="Seed",
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import PIL
|
| 8 |
+
#import spaces
|
| 9 |
import torch
|
| 10 |
from diffusers.models import ControlNetModel
|
| 11 |
from diffusers.utils import load_image
|
|
|
|
| 17 |
|
| 18 |
# global variable
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
torch_dtype = torch.float16
|
| 22 |
+
if torch.backends.mps.is_available():
|
| 23 |
+
device = "mps"
|
| 24 |
+
torch_dtype = torch.float32
|
| 25 |
+
elif torch.cuda.is_available():
|
| 26 |
+
device = "cuda"
|
| 27 |
+
else:
|
| 28 |
+
device = "cpu"
|
| 29 |
+
|
| 30 |
STYLE_NAMES = list(styles.keys())
|
| 31 |
DEFAULT_STYLE_NAME = "Watercolor"
|
| 32 |
|
|
|
|
| 40 |
local_dir="./checkpoints",
|
| 41 |
)
|
| 42 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
| 43 |
+
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 44 |
|
| 45 |
# Load face encoder
|
| 46 |
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
|
|
|
|
| 49 |
# Path to InstantID models
|
| 50 |
face_adapter = "./checkpoints/ip-adapter.bin"
|
| 51 |
controlnet_path = "./checkpoints/ControlNetModel"
|
| 52 |
+
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors"
|
| 53 |
|
| 54 |
# Load pipeline
|
| 55 |
+
#controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 56 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch_dtype)
|
| 57 |
|
| 58 |
base_model_path = "wangqixun/YamerMIX_v8"
|
| 59 |
|
| 60 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
| 61 |
base_model_path,
|
| 62 |
controlnet=controlnet,
|
| 63 |
+
#torch_dtype=torch.float16,
|
| 64 |
+
torch_dtype=torch_dtype,
|
| 65 |
safety_checker=None,
|
| 66 |
feature_extractor=None,
|
| 67 |
)
|
| 68 |
+
#pipe.cuda()
|
| 69 |
+
|
| 70 |
+
num_inference_steps = 30
|
| 71 |
+
guidance_scale = 5
|
| 72 |
+
|
| 73 |
+
+# LCM
|
| 74 |
+
if os.environ.get("LCM"):
|
| 75 |
+
num_inference_steps = 10
|
| 76 |
+
guidance_scale = 0
|
| 77 |
+
|
| 78 |
+
pipe.load_lora_weights(lcm_lora_path)
|
| 79 |
+
pipe.fuse_lora()
|
| 80 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 81 |
+
|
| 82 |
+
if device == 'mps':
|
| 83 |
+
pipe.to("mps", torch_dtype)
|
| 84 |
+
pipe.enable_attention_slicing()
|
| 85 |
+
elif device == 'cuda':
|
| 86 |
+
pipe.cuda()
|
| 87 |
+
|
| 88 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 89 |
+
#pipe.image_proj_model.to("cuda")
|
| 90 |
+
#pipe.unet.to("cuda")
|
| 91 |
+
if device == 'mps' or device == 'cuda':
|
| 92 |
+
pipe.image_proj_model.to(device)
|
| 93 |
+
pipe.unet.to(device)
|
| 94 |
+
|
| 95 |
|
| 96 |
|
| 97 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
|
| 223 |
raise gr.Error("Cannot find any input face image! Please upload the face image")
|
| 224 |
|
| 225 |
|
| 226 |
+
#@spaces.GPU
|
| 227 |
def generate_image(
|
| 228 |
face_image_path,
|
| 229 |
pose_image_path,
|
|
|
|
| 405 |
minimum=20,
|
| 406 |
maximum=100,
|
| 407 |
step=1,
|
| 408 |
+
value=num_inference_steps,
|
| 409 |
)
|
| 410 |
guidance_scale = gr.Slider(
|
| 411 |
label="Guidance scale",
|
| 412 |
minimum=0.1,
|
| 413 |
maximum=10.0,
|
| 414 |
step=0.1,
|
| 415 |
+
value=guidance_scale,
|
| 416 |
)
|
| 417 |
seed = gr.Slider(
|
| 418 |
label="Seed",
|
requirements.txt
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
diffusers==0.25.0
|
| 2 |
-
torch==2.0.0
|
| 3 |
-
torchvision==0.15.1
|
| 4 |
transformers==4.36.2
|
| 5 |
accelerate
|
| 6 |
safetensors
|
| 7 |
einops
|
| 8 |
-
onnxruntime-gpu
|
|
|
|
| 9 |
spaces==0.19.4
|
| 10 |
omegaconf
|
| 11 |
peft
|
| 12 |
huggingface-hub==0.20.2
|
| 13 |
opencv-python
|
| 14 |
-
insightface
|
|
|
|
| 1 |
diffusers==0.25.0
|
| 2 |
+
#torch==2.0.0
|
| 3 |
+
#torchvision==0.15.1
|
| 4 |
transformers==4.36.2
|
| 5 |
accelerate
|
| 6 |
safetensors
|
| 7 |
einops
|
| 8 |
+
#onnxruntime-gpu
|
| 9 |
+
onnxruntime
|
| 10 |
spaces==0.19.4
|
| 11 |
omegaconf
|
| 12 |
peft
|
| 13 |
huggingface-hub==0.20.2
|
| 14 |
opencv-python
|
| 15 |
+
insightface
|