Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import random
|
| 5 |
+
|
| 6 |
+
# Load the Indian Law dataset
|
| 7 |
+
print("Loading Indian Law Dataset...")
|
| 8 |
+
ds = load_dataset("viber1/indian-law-dataset")
|
| 9 |
+
|
| 10 |
+
# Convert to pandas for easier manipulation
|
| 11 |
+
df = pd.DataFrame(ds['train'])
|
| 12 |
+
|
| 13 |
+
print(f"Dataset loaded successfully with {len(df)} entries")
|
| 14 |
+
print(f"Dataset columns: {df.columns.tolist()}")
|
| 15 |
+
|
| 16 |
+
# Preview first few entries
|
| 17 |
+
print("\nFirst 3 entries:")
|
| 18 |
+
for i in range(min(3, len(df))):
|
| 19 |
+
print(f"\nEntry {i+1}:")
|
| 20 |
+
for col in df.columns:
|
| 21 |
+
print(f" {col}: {df.iloc[i][col][:100] if isinstance(df.iloc[i][col], str) else df.iloc[i][col]}...")
|
| 22 |
+
|
| 23 |
+
def search_legal_info(question):
|
| 24 |
+
"""Search the dataset for relevant legal information based on user question"""
|
| 25 |
+
if not question or len(question.strip()) == 0:
|
| 26 |
+
return "Please enter a legal question."
|
| 27 |
+
|
| 28 |
+
question_lower = question.lower()
|
| 29 |
+
results = []
|
| 30 |
+
|
| 31 |
+
# Search through the dataset
|
| 32 |
+
for idx, row in df.iterrows():
|
| 33 |
+
# Check all text columns for matches
|
| 34 |
+
for col in df.columns:
|
| 35 |
+
if isinstance(row[col], str) and any(word in row[col].lower() for word in question_lower.split()):
|
| 36 |
+
results.append(row.to_dict())
|
| 37 |
+
break
|
| 38 |
+
|
| 39 |
+
if len(results) >= 5: # Limit to top 5 results
|
| 40 |
+
break
|
| 41 |
+
|
| 42 |
+
if not results:
|
| 43 |
+
return "No relevant information found in the dataset. Try rephrasing your question or use different keywords."
|
| 44 |
+
|
| 45 |
+
# Format the response
|
| 46 |
+
response = "π **Legal Information Found:**\n\n"
|
| 47 |
+
for i, result in enumerate(results, 1):
|
| 48 |
+
response += f"**Result {i}:**\n"
|
| 49 |
+
for key, value in result.items():
|
| 50 |
+
if value and isinstance(value, str):
|
| 51 |
+
# Truncate long text
|
| 52 |
+
display_value = value[:500] + "..." if len(value) > 500 else value
|
| 53 |
+
response += f"- **{key}**: {display_value}\n"
|
| 54 |
+
response += "\n---\n\n"
|
| 55 |
+
|
| 56 |
+
return response
|
| 57 |
+
|
| 58 |
+
def get_random_sample():
|
| 59 |
+
"""Get a random entry from the dataset"""
|
| 60 |
+
random_idx = random.randint(0, len(df) - 1)
|
| 61 |
+
sample = df.iloc[random_idx]
|
| 62 |
+
|
| 63 |
+
response = "π **Random Dataset Entry:**\n\n"
|
| 64 |
+
for key, value in sample.items():
|
| 65 |
+
if value and isinstance(value, str):
|
| 66 |
+
display_value = value[:500] + "..." if len(value) > 500 else value
|
| 67 |
+
response += f"**{key}**: {display_value}\n\n"
|
| 68 |
+
|
| 69 |
+
return response
|
| 70 |
+
|
| 71 |
+
# Create Gradio interface
|
| 72 |
+
with gr.Blocks(title="Indian Law Q&A Assistant") as demo:
|
| 73 |
+
gr.Markdown("""
|
| 74 |
+
# ποΈ Indian Law Q&A Assistant
|
| 75 |
+
|
| 76 |
+
Welcome to the Indian Law Question-Answer Assistant powered by the `viber1/indian-law-dataset`.
|
| 77 |
+
|
| 78 |
+
### How to use:
|
| 79 |
+
1. Enter your legal question in the text box below
|
| 80 |
+
2. Click "Search" to find relevant information from the dataset
|
| 81 |
+
3. Or click "Random Sample" to explore a random entry from the dataset
|
| 82 |
+
|
| 83 |
+
---
|
| 84 |
+
|
| 85 |
+
β οΈ **DISCLAIMER**: This application is for **informational purposes only**. The information provided
|
| 86 |
+
is based on a dataset and should NOT be considered as legal advice. Always consult with a qualified
|
| 87 |
+
legal professional for specific legal matters and guidance.
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
""")
|
| 91 |
+
|
| 92 |
+
with gr.Row():
|
| 93 |
+
with gr.Column():
|
| 94 |
+
question_input = gr.Textbox(
|
| 95 |
+
label="Your Legal Question",
|
| 96 |
+
placeholder="E.g., What are the provisions related to property rights?",
|
| 97 |
+
lines=3
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
with gr.Row():
|
| 101 |
+
search_btn = gr.Button("π Search", variant="primary")
|
| 102 |
+
random_btn = gr.Button("π² Random Sample")
|
| 103 |
+
|
| 104 |
+
output_box = gr.Markdown(label="Response")
|
| 105 |
+
|
| 106 |
+
# Button actions
|
| 107 |
+
search_btn.click(fn=search_legal_info, inputs=question_input, outputs=output_box)
|
| 108 |
+
random_btn.click(fn=get_random_sample, inputs=None, outputs=output_box)
|
| 109 |
+
|
| 110 |
+
gr.Markdown("""
|
| 111 |
+
---
|
| 112 |
+
|
| 113 |
+
### Dataset Information:
|
| 114 |
+
- **Dataset**: viber1/indian-law-dataset
|
| 115 |
+
- **Total Entries**: """ + str(len(df)) + """
|
| 116 |
+
- **Columns**: """ + ", ".join(df.columns.tolist()) + """
|
| 117 |
+
|
| 118 |
+
*Built with π using Gradio and Hugging Face Datasets*
|
| 119 |
+
""")
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
demo.launch()
|