Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,6 @@ try:
|
|
| 16 |
except:
|
| 17 |
print("english model load error")
|
| 18 |
|
| 19 |
-
'''
|
| 20 |
try:
|
| 21 |
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 22 |
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
|
@@ -28,19 +27,17 @@ try:
|
|
| 28 |
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 29 |
except:
|
| 30 |
print("keybert model load error")
|
| 31 |
-
'''
|
| 32 |
|
| 33 |
|
| 34 |
def perform_asde_inference(text, dataset, model_id):
|
| 35 |
if not text:
|
| 36 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 37 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
| 38 |
-
'''
|
| 39 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 40 |
df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
|
| 41 |
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 42 |
df = pd.read_csv('keybert_valid.csv')#validation dataset
|
| 43 |
-
|
| 44 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
| 45 |
selected_df = df.iloc[random_i]
|
| 46 |
text = selected_df['clean_text']
|
|
@@ -67,7 +64,6 @@ def perform_asde_inference(text, dataset, model_id):
|
|
| 67 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 68 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
| 69 |
|
| 70 |
-
'''
|
| 71 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 72 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 73 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
|
@@ -77,7 +73,6 @@ def perform_asde_inference(text, dataset, model_id):
|
|
| 77 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 78 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 79 |
model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
| 80 |
-
'''
|
| 81 |
|
| 82 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
| 83 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
|
@@ -124,8 +119,8 @@ if __name__ == "__main__":
|
|
| 124 |
asde_model_ids = gr.Radio(
|
| 125 |
choices=[
|
| 126 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 127 |
-
|
| 128 |
-
|
| 129 |
],
|
| 130 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 131 |
label="Fine-tuned Models on Hospital Review custom data",
|
|
|
|
| 16 |
except:
|
| 17 |
print("english model load error")
|
| 18 |
|
|
|
|
| 19 |
try:
|
| 20 |
tokenizer_multilingual = AutoTokenizer.from_pretrained("amir22010/amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 21 |
double_multilingual_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/PyABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
|
|
|
| 27 |
double_keybert_generator = AutoModelForSeq2SeqLM.from_pretrained("amir22010/KeyBert_ABSA_Hospital_Multilingual_allenai_tk-instruct-base-def-pos_FinedTuned_Model")
|
| 28 |
except:
|
| 29 |
print("keybert model load error")
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def perform_asde_inference(text, dataset, model_id):
|
| 33 |
if not text:
|
| 34 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 35 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
|
|
|
| 36 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 37 |
df = pd.read_csv('pyabsa_multilingual.csv')#validation dataset
|
| 38 |
elif model_id == "KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 39 |
df = pd.read_csv('keybert_valid.csv')#validation dataset
|
| 40 |
+
|
| 41 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
| 42 |
selected_df = df.iloc[random_i]
|
| 43 |
text = selected_df['clean_text']
|
|
|
|
| 64 |
output = double_english_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 65 |
model_generated = tokenizer_english.decode(output[0], skip_special_tokens=True)
|
| 66 |
|
|
|
|
| 67 |
elif model_id == "PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 68 |
tokenized_text = tokenizer_multilingual(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 69 |
output = double_multilingual_generator.generate(tokenized_text.input_ids,max_length=512)
|
|
|
|
| 73 |
tokenized_text = tokenizer_keybert(bos_instruction + text + delim_instruct + eos_instruct, return_tensors="pt")
|
| 74 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 75 |
model_generated = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
|
|
|
| 76 |
|
| 77 |
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
| 78 |
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
|
|
|
| 119 |
asde_model_ids = gr.Radio(
|
| 120 |
choices=[
|
| 121 |
"PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 122 |
+
"PyABSA_Hospital_Multilingual_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 123 |
+
"KeyBert_ABSA_Hospital_allenai/tk-instruct-base-def-pos_FinedTuned_Model"
|
| 124 |
],
|
| 125 |
value="PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model",
|
| 126 |
label="Fine-tuned Models on Hospital Review custom data",
|