Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -30,7 +30,6 @@ except:
|
|
| 30 |
|
| 31 |
'''
|
| 32 |
def perform_asde_inference(text, dataset, model_id):
|
| 33 |
-
print(text)
|
| 34 |
if not text:
|
| 35 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 36 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
|
@@ -39,7 +38,6 @@ def perform_asde_inference(text, dataset, model_id):
|
|
| 39 |
text = selected_df['clean_text']
|
| 40 |
true_aspect = selected_df['actual_aspects']
|
| 41 |
true_sentiment = selected_df['actual_sentiments']
|
| 42 |
-
|
| 43 |
|
| 44 |
bos_instruction = """Definition: The output will be the aspects (both implicit and explicit) and the aspects sentiment polarity. In cases where there are no aspects the output should be noaspectterm:none.
|
| 45 |
Positive example 1-
|
|
@@ -67,11 +65,15 @@ def perform_asde_inference(text, dataset, model_id):
|
|
| 67 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 68 |
result = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
| 69 |
'''
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
return pred_doubles, true_doubles, text, model_generated
|
| 77 |
|
|
|
|
| 30 |
|
| 31 |
'''
|
| 32 |
def perform_asde_inference(text, dataset, model_id):
|
|
|
|
| 33 |
if not text:
|
| 34 |
if model_id == "PyABSA_Hospital_English_allenai/tk-instruct-base-def-pos_FinedTuned_Model":
|
| 35 |
df = pd.read_csv('pyabsa_english.csv')#validation dataset
|
|
|
|
| 38 |
text = selected_df['clean_text']
|
| 39 |
true_aspect = selected_df['actual_aspects']
|
| 40 |
true_sentiment = selected_df['actual_sentiments']
|
|
|
|
| 41 |
|
| 42 |
bos_instruction = """Definition: The output will be the aspects (both implicit and explicit) and the aspects sentiment polarity. In cases where there are no aspects the output should be noaspectterm:none.
|
| 43 |
Positive example 1-
|
|
|
|
| 65 |
output = double_keybert_generator.generate(tokenized_text.input_ids,max_length=512)
|
| 66 |
result = tokenizer_keybert.decode(output[0], skip_special_tokens=True)
|
| 67 |
'''
|
| 68 |
+
pred_asp = [i.split(':')[0] for i in model_generated.split(',')]
|
| 69 |
+
pred_sent = [i.split(':')[1] for i in model_generated.split(',')]
|
| 70 |
|
| 71 |
+
pred_doubles = pd.DataFrame(list(map(list, zip(pred_asp, pred_sent))),columns=['Aspect','Sentiment'])
|
| 72 |
+
|
| 73 |
+
if not text:
|
| 74 |
+
true_doubles = pd.DataFrame(list(map(list, zip(ast.literal_eval(true_aspect), ast.literal_eval(true_sentiment)))),columns=['Aspect','Sentiment'])
|
| 75 |
+
else:
|
| 76 |
+
true_doubles = pd.DataFrame()
|
| 77 |
|
| 78 |
return pred_doubles, true_doubles, text, model_generated
|
| 79 |
|