Spaces:
Runtime error
Runtime error
| # Copyright (c) Guangsheng Bao. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # setup the environment | |
| echo `date`, Setup the environment ... | |
| set -e # exit if error | |
| # prepare folders | |
| para=t5 # "t5" for paraphrasing attack, or "random" for decoherence attack | |
| exp_path=exp_attack | |
| data_path=$exp_path/data | |
| res_path=$exp_path/results | |
| mkdir -p $exp_path $data_path $res_path | |
| src_path=exp_gpt3to4 | |
| src_data_path=$src_path/data | |
| datasets="xsum writing pubmed" | |
| source_models="gpt-3.5-turbo" | |
| # preparing dataset | |
| for D in $datasets; do | |
| for M in $source_models; do | |
| echo `date`, Preparing dataset ${D}_${M} by paraphrasing ${src_data_path}/${D}_${M} ... | |
| python scripts/paraphrasing.py --dataset $D --dataset_file $src_data_path/${D}_${M} \ | |
| --paraphraser $para --output_file $data_path/${D}_${M} | |
| done | |
| done | |
| # evaluate Fast-DetectGPT in the black-box setting | |
| settings="gpt-j-6B:gpt2-xl gpt-j-6B:gpt-neo-2.7B gpt-j-6B:gpt-j-6B" | |
| for D in $datasets; do | |
| for M in $source_models; do | |
| for S in $settings; do | |
| IFS=':' read -r -a S <<< $S && M1=${S[0]} && M2=${S[1]} | |
| echo `date`, Evaluating Fast-DetectGPT on ${D}_${M}.${M1}_${M2} ... | |
| python scripts/fast_detect_gpt.py --reference_model_name $M1 --scoring_model_name $M2 --discrepancy_analytic \ | |
| --dataset $D --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2} | |
| done | |
| done | |
| done | |
| # evaluate supervised detectors | |
| supervised_models="roberta-base-openai-detector roberta-large-openai-detector" | |
| for D in $datasets; do | |
| for M in $source_models; do | |
| for SM in $supervised_models; do | |
| echo `date`, Evaluating ${SM} on ${D}_${M} ... | |
| python scripts/supervised.py --model_name $SM --dataset $D \ | |
| --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} | |
| done | |
| done | |
| done | |
| # evaluate fast baselines | |
| scoring_models="gpt-neo-2.7B" | |
| for D in $datasets; do | |
| for M in $source_models; do | |
| for M2 in $scoring_models; do | |
| echo `date`, Evaluating baseline methods on ${D}_${M}.${M2} ... | |
| python scripts/baselines.py --scoring_model_name ${M2} --dataset $D \ | |
| --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M2} | |
| done | |
| done | |
| done | |
| # evaluate DetectGPT and DetectLLM | |
| scoring_models="gpt2-xl gpt-neo-2.7B gpt-j-6B" | |
| for D in $datasets; do | |
| for M in $source_models; do | |
| M1=t5-11b # perturbation model | |
| for M2 in $scoring_models; do | |
| echo `date`, Evaluating DetectGPT on ${D}_${M}.${M1}_${M2} ... | |
| python scripts/detect_gpt.py --mask_filling_model_name ${M1} --scoring_model_name ${M2} --n_perturbations 100 --dataset $D \ | |
| --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2} | |
| # we leverage DetectGPT to generate the perturbations | |
| echo `date`, Evaluating DetectLLM methods on ${D}_${M}.${M1}_${M2} ... | |
| python scripts/detect_llm.py --scoring_model_name ${M2} --dataset $D \ | |
| --dataset_file $data_path/${D}_${M}.${M1}.perturbation_100 --output_file $res_path/${D}_${M}.${M1}_${M2} | |
| done | |
| done | |
| done | |