Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,55 +1,60 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
|
| 3 |
-
from torchvision import models
|
| 4 |
-
import torch.nn as nn
|
| 5 |
-
import torch
|
| 6 |
-
import os
|
| 7 |
-
from PIL import Image
|
| 8 |
-
from torchvision.transforms import transforms
|
| 9 |
-
from dotenv import load_dotenv
|
| 10 |
-
load_dotenv()
|
| 11 |
-
|
| 12 |
-
share = os.getenv("SHARE", False)
|
| 13 |
-
pretrained_model = models.vgg19(pretrained=True)
|
| 14 |
-
class NeuralNet(nn.Module):
|
| 15 |
-
def __init__(self):
|
| 16 |
-
super().__init__()
|
| 17 |
-
self.model = nn.Sequential(
|
| 18 |
-
pretrained_model,
|
| 19 |
-
nn.Flatten(),
|
| 20 |
-
nn.Linear(1000, 1),
|
| 21 |
-
nn.Sigmoid()
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
def forward(self, x):
|
| 25 |
-
return self.model(x)
|
| 26 |
-
|
| 27 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
-
|
| 29 |
-
model = NeuralNet()
|
| 30 |
-
|
| 31 |
-
model.load_state_dict(torch.load("mask_detection.pth", map_location=device))
|
| 32 |
-
|
| 33 |
-
model = model.to(device)
|
| 34 |
-
|
| 35 |
-
transform=transforms.Compose([
|
| 36 |
-
transforms.Resize((150,150)),
|
| 37 |
-
transforms.RandomHorizontalFlip(),
|
| 38 |
-
transforms.ToTensor(),
|
| 39 |
-
transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
|
| 40 |
-
])
|
| 41 |
-
|
| 42 |
-
def
|
| 43 |
-
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
| 44 |
-
image.save("input.png")
|
| 45 |
-
image = Image.open("input.png")
|
| 46 |
-
input = transform(image).unsqueeze(0)
|
| 47 |
-
output = model(input.to(device))
|
| 48 |
-
probability = output.item()
|
| 49 |
-
if probability < 0.5:
|
| 50 |
-
return "Person in the pic has mask"
|
| 51 |
-
else:
|
| 52 |
-
return "Person in the pic does not have mask"
|
| 53 |
-
|
| 54 |
-
iface = gr.Interface(fn=
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from torchvision import models
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from torchvision.transforms import transforms
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
share = os.getenv("SHARE", False)
|
| 13 |
+
pretrained_model = models.vgg19(pretrained=True)
|
| 14 |
+
class NeuralNet(nn.Module):
|
| 15 |
+
def __init__(self):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.model = nn.Sequential(
|
| 18 |
+
pretrained_model,
|
| 19 |
+
nn.Flatten(),
|
| 20 |
+
nn.Linear(1000, 1),
|
| 21 |
+
nn.Sigmoid()
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
return self.model(x)
|
| 26 |
+
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
|
| 29 |
+
model = NeuralNet()
|
| 30 |
+
|
| 31 |
+
model.load_state_dict(torch.load("mask_detection.pth", map_location=device))
|
| 32 |
+
|
| 33 |
+
model = model.to(device)
|
| 34 |
+
|
| 35 |
+
transform=transforms.Compose([
|
| 36 |
+
transforms.Resize((150,150)),
|
| 37 |
+
transforms.RandomHorizontalFlip(),
|
| 38 |
+
transforms.ToTensor(),
|
| 39 |
+
transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
|
| 40 |
+
])
|
| 41 |
+
|
| 42 |
+
def maskDetection(image):
|
| 43 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
| 44 |
+
image.save("input.png")
|
| 45 |
+
image = Image.open("input.png")
|
| 46 |
+
input = transform(image).unsqueeze(0)
|
| 47 |
+
output = model(input.to(device))
|
| 48 |
+
probability = output.item()
|
| 49 |
+
if probability < 0.5:
|
| 50 |
+
return "Person in the pic has mask"
|
| 51 |
+
else:
|
| 52 |
+
return "Person in the pic does not have mask"
|
| 53 |
+
|
| 54 |
+
iface = gr.Interface(fn=maskDetection, inputs="image", outputs="text", title="Mask Detection")
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
if share:
|
| 57 |
+
server = "0.0.0.0"
|
| 58 |
+
else:
|
| 59 |
+
server = "127.0.0.1"
|
| 60 |
+
iface.launch(server_name = server)
|