Spaces:
Build error
Build error
| import numpy as np | |
| import os | |
| import matplotlib as mpl | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| import torch | |
| import torchvision | |
| from utils.richtext_utils import seed_everything | |
| from sklearn.cluster import SpectralClustering | |
| SelfAttentionLayers = [ | |
| 'down_blocks.0.attentions.0.transformer_blocks.0.attn1', | |
| 'down_blocks.0.attentions.1.transformer_blocks.0.attn1', | |
| 'down_blocks.1.attentions.0.transformer_blocks.0.attn1', | |
| 'down_blocks.1.attentions.1.transformer_blocks.0.attn1', | |
| 'down_blocks.2.attentions.0.transformer_blocks.0.attn1', | |
| 'down_blocks.2.attentions.1.transformer_blocks.0.attn1', | |
| 'mid_block.attentions.0.transformer_blocks.0.attn1', | |
| 'up_blocks.1.attentions.0.transformer_blocks.0.attn1', | |
| 'up_blocks.1.attentions.1.transformer_blocks.0.attn1', | |
| 'up_blocks.1.attentions.2.transformer_blocks.0.attn1', | |
| 'up_blocks.2.attentions.0.transformer_blocks.0.attn1', | |
| 'up_blocks.2.attentions.1.transformer_blocks.0.attn1', | |
| 'up_blocks.2.attentions.2.transformer_blocks.0.attn1', | |
| 'up_blocks.3.attentions.0.transformer_blocks.0.attn1', | |
| 'up_blocks.3.attentions.1.transformer_blocks.0.attn1', | |
| 'up_blocks.3.attentions.2.transformer_blocks.0.attn1', | |
| ] | |
| CrossAttentionLayers = [ | |
| # 'down_blocks.0.attentions.0.transformer_blocks.0.attn2', | |
| # 'down_blocks.0.attentions.1.transformer_blocks.0.attn2', | |
| 'down_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
| # 'down_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
| 'down_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
| 'down_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
| 'mid_block.attentions.0.transformer_blocks.0.attn2', | |
| 'up_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
| 'up_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
| 'up_blocks.1.attentions.2.transformer_blocks.0.attn2', | |
| # 'up_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
| 'up_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
| # 'up_blocks.2.attentions.2.transformer_blocks.0.attn2', | |
| # 'up_blocks.3.attentions.0.transformer_blocks.0.attn2', | |
| # 'up_blocks.3.attentions.1.transformer_blocks.0.attn2', | |
| # 'up_blocks.3.attentions.2.transformer_blocks.0.attn2' | |
| ] | |
| def split_attention_maps_over_steps(attention_maps): | |
| r"""Function for splitting attention maps over steps. | |
| Args: | |
| attention_maps (dict): Dictionary of attention maps. | |
| sampler_order (int): Order of the sampler. | |
| """ | |
| # This function splits attention maps into unconditional and conditional score and over steps | |
| attention_maps_cond = dict() # Maps corresponding to conditional score | |
| attention_maps_uncond = dict() # Maps corresponding to unconditional score | |
| for layer in attention_maps.keys(): | |
| for step_num in range(len(attention_maps[layer])): | |
| if step_num not in attention_maps_cond: | |
| attention_maps_cond[step_num] = dict() | |
| attention_maps_uncond[step_num] = dict() | |
| attention_maps_uncond[step_num].update( | |
| {layer: attention_maps[layer][step_num][:1]}) | |
| attention_maps_cond[step_num].update( | |
| {layer: attention_maps[layer][step_num][1:2]}) | |
| return attention_maps_cond, attention_maps_uncond | |
| def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None): | |
| atten_names = ['presoftmax', 'postsoftmax', 'postsoftmax_erosion'] | |
| for i, attn_map in enumerate(atten_map_list): | |
| n_obj = len(attn_map) | |
| plt.figure() | |
| plt.clf() | |
| fig, axs = plt.subplots( | |
| ncols=n_obj+1, gridspec_kw=dict(width_ratios=[1 for _ in range(n_obj)]+[0.1])) | |
| fig.set_figheight(3) | |
| fig.set_figwidth(3*n_obj+0.1) | |
| cmap = plt.get_cmap('OrRd') | |
| vmax = 0 | |
| vmin = 1 | |
| for tid in range(n_obj): | |
| attention_map_cur = attn_map[tid] | |
| vmax = max(vmax, float(attention_map_cur.max())) | |
| vmin = min(vmin, float(attention_map_cur.min())) | |
| for tid in range(n_obj): | |
| sns.heatmap( | |
| attn_map[tid][0], annot=False, cbar=False, ax=axs[tid], | |
| cmap=cmap, vmin=vmin, vmax=vmax | |
| ) | |
| axs[tid].set_axis_off() | |
| if tokens_vis is not None: | |
| if tid == n_obj-1: | |
| axs_xlabel = 'other tokens' | |
| else: | |
| axs_xlabel = '' | |
| for token_id in obj_tokens[tid]: | |
| axs_xlabel += ' ' + tokens_vis[token_id.item() - | |
| 1][:-len('</w>')] | |
| axs[tid].set_title(axs_xlabel) | |
| norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) | |
| sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) | |
| fig.colorbar(sm, cax=axs[-1]) | |
| canvas = fig.canvas | |
| canvas.draw() | |
| width, height = canvas.get_width_height() | |
| img = np.frombuffer(canvas.tostring_rgb(), | |
| dtype='uint8').reshape((height, width, 3)) | |
| fig.tight_layout() | |
| plt.close() | |
| return img | |
| def get_token_maps_deprecated(attention_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None): | |
| r"""Function to visualize attention maps. | |
| Args: | |
| save_dir (str): Path to save attention maps | |
| batch_size (int): Batch size | |
| sampler_order (int): Sampler order | |
| """ | |
| # Split attention maps over steps | |
| attention_maps_cond, _ = split_attention_maps_over_steps( | |
| attention_maps | |
| ) | |
| nsteps = len(attention_maps_cond) | |
| hw_ori = width * height | |
| attention_maps = [] | |
| for obj_token in obj_tokens: | |
| attention_maps.append([]) | |
| for step_num in range(nsteps): | |
| attention_maps_cur = attention_maps_cond[step_num] | |
| for layer in attention_maps_cur.keys(): | |
| if step_num < 10 or layer not in CrossAttentionLayers: | |
| continue | |
| attention_ind = attention_maps_cur[layer].cpu() | |
| # Attention maps are of shape [batch_size, nkeys, 77] | |
| # since they are averaged out while collecting from hooks to save memory. | |
| # Now split the heads from batch dimension | |
| bs, hw, nclip = attention_ind.shape | |
| down_ratio = np.sqrt(hw_ori // hw) | |
| width_cur = int(width // down_ratio) | |
| height_cur = int(height // down_ratio) | |
| attention_ind = attention_ind.reshape( | |
| bs, height_cur, width_cur, nclip) | |
| for obj_id, obj_token in enumerate(obj_tokens): | |
| if obj_token[0] == -1: | |
| attention_map_prev = torch.stack( | |
| [attention_maps[i][-1] for i in range(obj_id)]).sum(0) | |
| attention_maps[obj_id].append( | |
| attention_map_prev.max()-attention_map_prev) | |
| else: | |
| obj_attention_map = attention_ind[:, :, :, obj_token].max(-1, True)[ | |
| 0].permute([3, 0, 1, 2]) | |
| obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width), | |
| interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True) | |
| attention_maps[obj_id].append(obj_attention_map) | |
| # average attention maps over steps | |
| attention_maps_averaged = [] | |
| for obj_id, obj_token in enumerate(obj_tokens): | |
| if obj_id == len(obj_tokens) - 1: | |
| attention_maps_averaged.append( | |
| torch.cat(attention_maps[obj_id]).mean(0)) | |
| else: | |
| attention_maps_averaged.append( | |
| torch.cat(attention_maps[obj_id]).mean(0)) | |
| # normalize attention maps into [0, 1] | |
| attention_maps_averaged_normalized = [] | |
| attention_maps_averaged_sum = torch.cat(attention_maps_averaged).sum(0) | |
| for obj_id, obj_token in enumerate(obj_tokens): | |
| attention_maps_averaged_normalized.append( | |
| attention_maps_averaged[obj_id]/attention_maps_averaged_sum) | |
| # softmax | |
| attention_maps_averaged_normalized = ( | |
| torch.cat(attention_maps_averaged)/0.001).softmax(0) | |
| attention_maps_averaged_normalized = [ | |
| attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])] | |
| token_maps_vis = plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized], | |
| obj_tokens, save_dir, seed, tokens_vis) | |
| attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat( | |
| [1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized] | |
| return attention_maps_averaged_normalized, token_maps_vis | |
| def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None, | |
| preprocess=False, segment_threshold=0.3, num_segments=5, return_vis=False, save_attn=False): | |
| r"""Function to visualize attention maps. | |
| Args: | |
| save_dir (str): Path to save attention maps | |
| batch_size (int): Batch size | |
| sampler_order (int): Sampler order | |
| """ | |
| # create the segmentation mask using self-attention maps | |
| resolution = 32 | |
| attn_maps_1024 = {8: [], 16: [], 32: [], 64: []} | |
| for attn_map in selfattn_maps.values(): | |
| resolution_map = np.sqrt(attn_map.shape[1]).astype(int) | |
| if resolution_map != resolution: | |
| continue | |
| attn_map = attn_map.reshape( | |
| 1, resolution_map, resolution_map, resolution_map**2).permute([3, 0, 1, 2]) | |
| attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution), | |
| mode='bicubic', antialias=True) | |
| attn_maps_1024[resolution_map].append(attn_map.permute([1, 2, 3, 0]).reshape( | |
| 1, resolution**2, resolution_map**2)) | |
| attn_maps_1024 = torch.cat([torch.cat(v).mean(0).cpu() | |
| for v in attn_maps_1024.values() if len(v) > 0], -1).numpy() | |
| if save_attn: | |
| print('saving self-attention maps...', attn_maps_1024.shape) | |
| torch.save(torch.from_numpy(attn_maps_1024), | |
| 'results/maps/selfattn_maps.pth') | |
| seed_everything(seed) | |
| sc = SpectralClustering(num_segments, affinity='precomputed', n_init=100, | |
| assign_labels='kmeans') | |
| clusters = sc.fit_predict(attn_maps_1024) | |
| clusters = clusters.reshape(resolution, resolution) | |
| fig = plt.figure() | |
| plt.imshow(clusters) | |
| plt.axis('off') | |
| if return_vis: | |
| canvas = fig.canvas | |
| canvas.draw() | |
| cav_width, cav_height = canvas.get_width_height() | |
| segments_vis = np.frombuffer(canvas.tostring_rgb(), | |
| dtype='uint8').reshape((cav_height, cav_width, 3)) | |
| plt.close() | |
| # label the segmentation mask using cross-attention maps | |
| cross_attn_maps_1024 = [] | |
| for attn_map in crossattn_maps.values(): | |
| resolution_map = np.sqrt(attn_map.shape[1]).astype(int) | |
| attn_map = attn_map.reshape( | |
| 1, resolution_map, resolution_map, -1).permute([0, 3, 1, 2]) | |
| attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution), | |
| mode='bicubic', antialias=True) | |
| cross_attn_maps_1024.append(attn_map.permute([0, 2, 3, 1])) | |
| cross_attn_maps_1024 = torch.cat( | |
| cross_attn_maps_1024).mean(0).cpu().numpy() | |
| if save_attn: | |
| print('saving cross-attention maps...', cross_attn_maps_1024.shape) | |
| torch.save(torch.from_numpy(cross_attn_maps_1024), | |
| 'results/maps/crossattn_maps.pth') | |
| normalized_span_maps = [] | |
| for token_ids in obj_tokens: | |
| span_token_maps = cross_attn_maps_1024[:, :, token_ids.numpy()] | |
| normalized_span_map = np.zeros_like(span_token_maps) | |
| for i in range(span_token_maps.shape[-1]): | |
| curr_noun_map = span_token_maps[:, :, i] | |
| normalized_span_map[:, :, i] = ( | |
| curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max() | |
| normalized_span_maps.append(normalized_span_map) | |
| foreground_token_maps = [np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze( | |
| ) for normalized_span_map in normalized_span_maps] | |
| background_map = np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze() | |
| for c in range(num_segments): | |
| cluster_mask = np.zeros_like(clusters) | |
| cluster_mask[clusters == c] = 1. | |
| is_foreground = False | |
| for normalized_span_map, foreground_nouns_map, token_ids in zip(normalized_span_maps, foreground_token_maps, obj_tokens): | |
| score_maps = [cluster_mask * normalized_span_map[:, :, i] | |
| for i in range(len(token_ids))] | |
| scores = [score_map.sum() / cluster_mask.sum() | |
| for score_map in score_maps] | |
| if max(scores) > segment_threshold: | |
| foreground_nouns_map += cluster_mask | |
| is_foreground = True | |
| if not is_foreground: | |
| background_map += cluster_mask | |
| foreground_token_maps.append(background_map) | |
| # resize the token maps and visualization | |
| resized_token_maps = torch.cat([torch.nn.functional.interpolate(torch.from_numpy(token_map).unsqueeze(0).unsqueeze( | |
| 0), (height, width), mode='bicubic', antialias=True)[0] for token_map in foreground_token_maps]).clamp(0, 1) | |
| resized_token_maps = resized_token_maps / \ | |
| (resized_token_maps.sum(0, True)+1e-8) | |
| resized_token_maps = [token_map.unsqueeze( | |
| 0) for token_map in resized_token_maps] | |
| foreground_token_maps = [token_map[None, :, :] | |
| for token_map in foreground_token_maps] | |
| token_maps_vis = plot_attention_maps([foreground_token_maps, resized_token_maps], obj_tokens, | |
| save_dir, seed, tokens_vis) | |
| resized_token_maps = [token_map.unsqueeze(1).repeat( | |
| [1, 4, 1, 1]).to(attn_map.dtype).cuda() for token_map in resized_token_maps] | |
| if return_vis: | |
| return resized_token_maps, segments_vis, token_maps_vis | |
| else: | |
| return resized_token_maps | |