Spaces:
Sleeping
Sleeping
Update interface.py
Browse files- interface.py +185 -185
interface.py
CHANGED
|
@@ -1,186 +1,186 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import json
|
| 3 |
-
import re
|
| 4 |
-
from json import loads, JSONDecodeError
|
| 5 |
-
import sys
|
| 6 |
-
import os
|
| 7 |
-
import ast
|
| 8 |
-
from util.vector_base import EmbeddingFunction, get_or_create_vector_base
|
| 9 |
-
from doubao_service import DouBaoService
|
| 10 |
-
from PROMPT_TEMPLATE import prompt_template
|
| 11 |
-
from util.Embeddings import TextEmb3LargeEmbedding
|
| 12 |
-
from langchain_core.documents import Document
|
| 13 |
-
from FlagEmbedding import FlagReranker
|
| 14 |
-
from retriever import retriever
|
| 15 |
-
import time
|
| 16 |
-
from bm25s import BM25, tokenize
|
| 17 |
-
import contextlib
|
| 18 |
-
import io
|
| 19 |
-
|
| 20 |
-
import gradio as gr
|
| 21 |
-
import time
|
| 22 |
-
|
| 23 |
-
client = DouBaoService("DouBao128Pro")
|
| 24 |
-
embeddingmodel = TextEmb3LargeEmbedding(max_qpm=58)
|
| 25 |
-
embedding = EmbeddingFunction(embeddingmodel)
|
| 26 |
-
safeguard_vector_store = get_or_create_vector_base('safeguard_database', embedding)
|
| 27 |
-
|
| 28 |
-
# reranker_model = FlagReranker(
|
| 29 |
-
# 'C://Users//Admin//Desktop//PDPO//NLL_LLM//model//bge-reranker-v2-m3',
|
| 30 |
-
# use_fp16=True,
|
| 31 |
-
# devices=["cpu"],
|
| 32 |
-
# )
|
| 33 |
-
|
| 34 |
-
OPTIONS = ['AI Governance',
|
| 35 |
-
'Data Accuracy',
|
| 36 |
-
'Data Minimization & Purpose Limitation',
|
| 37 |
-
'Data Retention',
|
| 38 |
-
'Data Security',
|
| 39 |
-
'Data Sharing',
|
| 40 |
-
'Individual Rights',
|
| 41 |
-
'Privacy by Design',
|
| 42 |
-
'Transparency']
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def format_model_output(raw_output):
|
| 46 |
-
"""
|
| 47 |
-
处理模型输出:
|
| 48 |
-
- 将 \n 转换为实际换行
|
| 49 |
-
- 提取 ```json ``` 中的内容并格式化为可折叠的 JSON
|
| 50 |
-
"""
|
| 51 |
-
formatted = raw_output.replace('\\n', '\n')
|
| 52 |
-
def replace_json(match):
|
| 53 |
-
json_str = match.group(1).strip()
|
| 54 |
-
try:
|
| 55 |
-
json_obj = loads(json_str)
|
| 56 |
-
return f"```json\n{json.dumps(json_obj, indent=2, ensure_ascii=False)}\n```"
|
| 57 |
-
except JSONDecodeError:
|
| 58 |
-
return match.group(0)
|
| 59 |
-
|
| 60 |
-
formatted = re.sub(r'```json\n?(.*?)\n?```', replace_json, formatted, flags=re.DOTALL)
|
| 61 |
-
return ast.literal_eval(formatted)
|
| 62 |
-
|
| 63 |
-
def model_predict(input_text, if_split_po, topk, selected_items):
|
| 64 |
-
"""
|
| 65 |
-
selected_items: 用户选择的项目(可能是["All"]或具体PO)
|
| 66 |
-
"""
|
| 67 |
-
requirement = input_text
|
| 68 |
-
requirement = requirement.replace("\t", "").replace("\n", "").replace("\r", "")
|
| 69 |
-
if "All" in selected_items:
|
| 70 |
-
PO = OPTIONS
|
| 71 |
-
else:
|
| 72 |
-
PO = selected_items
|
| 73 |
-
if topk:
|
| 74 |
-
topk = int(topk)
|
| 75 |
-
else:
|
| 76 |
-
topk = 10
|
| 77 |
-
final_result = retriever(
|
| 78 |
-
requirement,
|
| 79 |
-
PO,
|
| 80 |
-
safeguard_vector_store,
|
| 81 |
-
reranker_model=None,
|
| 82 |
-
using_reranker=False,
|
| 83 |
-
using_BM25=False,
|
| 84 |
-
using_chroma=True,
|
| 85 |
-
k=topk,
|
| 86 |
-
if_split_po=if_split_po
|
| 87 |
-
)
|
| 88 |
-
mapping_safeguards = {}
|
| 89 |
-
for safeguard in final_result:
|
| 90 |
-
if safeguard[3] not in mapping_safeguards:
|
| 91 |
-
mapping_safeguards[safeguard[3]] = []
|
| 92 |
-
mapping_safeguards[safeguard[3]].append(
|
| 93 |
-
{
|
| 94 |
-
"Score": safeguard[0],
|
| 95 |
-
"Safeguard Number": safeguard[1],
|
| 96 |
-
"Safeguard Description": safeguard[2]
|
| 97 |
-
}
|
| 98 |
-
)
|
| 99 |
-
prompt = prompt_template(requirement, mapping_safeguards)
|
| 100 |
-
response = client.chat_complete(messages=[
|
| 101 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
| 102 |
-
{"role": "user", "content": prompt},
|
| 103 |
-
])
|
| 104 |
-
# return {"requirement": requirement, "safeguards": mapping_safeguards}
|
| 105 |
-
print("requirement:", requirement)
|
| 106 |
-
print("mapping safeguards:", mapping_safeguards)
|
| 107 |
-
print("response:", response)
|
| 108 |
-
return {"requirement": requirement, "safeguards": format_model_output(response)}
|
| 109 |
-
|
| 110 |
-
with gr.Blocks(title="New Law Landing") as demo:
|
| 111 |
-
gr.Markdown("## 🏙️ New Law Landing")
|
| 112 |
-
|
| 113 |
-
requirement = gr.Textbox(label="Input Requirements", placeholder="Example: Data Minimization Consent for incompatible purposes")
|
| 114 |
-
details = gr.Textbox(label="Input Details", placeholder="Example: Require consent for...")
|
| 115 |
-
|
| 116 |
-
# 修改为 Number 输入组件
|
| 117 |
-
topk = gr.Number(
|
| 118 |
-
label="Top K safeguards",
|
| 119 |
-
value=10,
|
| 120 |
-
precision=0,
|
| 121 |
-
minimum=1,
|
| 122 |
-
interactive=True
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
with gr.Row():
|
| 126 |
-
with gr.Column(scale=1):
|
| 127 |
-
if_split_po = gr.Checkbox(
|
| 128 |
-
label="If Split Privacy Objective",
|
| 129 |
-
value=True,
|
| 130 |
-
info="Recall K Safeguards for each Privacy Objective"
|
| 131 |
-
)
|
| 132 |
-
with gr.Column(scale=1):
|
| 133 |
-
all_checkbox = gr.Checkbox(
|
| 134 |
-
label="ALL Privacy Objective",
|
| 135 |
-
value=True,
|
| 136 |
-
info="No specific Privacy Objective is specified"
|
| 137 |
-
)
|
| 138 |
-
with gr.Column(scale=4):
|
| 139 |
-
PO_checklist = gr.CheckboxGroup(
|
| 140 |
-
label="Choose Privacy Objective",
|
| 141 |
-
choices=OPTIONS,
|
| 142 |
-
value=[],
|
| 143 |
-
interactive=True
|
| 144 |
-
)
|
| 145 |
-
|
| 146 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
| 147 |
-
result_output = gr.JSON(label="Related safeguards", open=True)
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
def sync_checkboxes(selected_items, all_selected):
|
| 151 |
-
if len(selected_items) > 0:
|
| 152 |
-
return False
|
| 153 |
-
return all_selected
|
| 154 |
-
|
| 155 |
-
PO_checklist.change(
|
| 156 |
-
fn=sync_checkboxes,
|
| 157 |
-
inputs=[PO_checklist, all_checkbox],
|
| 158 |
-
outputs=all_checkbox
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
def sync_all(selected_all, current_selection):
|
| 162 |
-
if selected_all:
|
| 163 |
-
return []
|
| 164 |
-
return current_selection
|
| 165 |
-
|
| 166 |
-
all_checkbox.change(
|
| 167 |
-
fn=sync_all,
|
| 168 |
-
inputs=[all_checkbox, PO_checklist],
|
| 169 |
-
outputs=PO_checklist
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
def process_inputs(requirement, details, topk, if_split_po, all_selected, PO_selected):
|
| 173 |
-
input_text = requirement + ": " + details
|
| 174 |
-
if all_selected:
|
| 175 |
-
return model_predict(input_text, if_split_po, int(topk), ["All"])
|
| 176 |
-
else:
|
| 177 |
-
return model_predict(input_text, if_split_po, int(topk), PO_selected)
|
| 178 |
-
|
| 179 |
-
submit_btn.click(
|
| 180 |
-
fn=process_inputs,
|
| 181 |
-
inputs=[requirement, details, topk, if_split_po, all_checkbox, PO_checklist],
|
| 182 |
-
outputs=[result_output]
|
| 183 |
-
)
|
| 184 |
-
|
| 185 |
-
if __name__ == "__main__":
|
| 186 |
demo.launch(share=True)
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import json
|
| 3 |
+
import re
|
| 4 |
+
from json import loads, JSONDecodeError
|
| 5 |
+
import sys
|
| 6 |
+
import os
|
| 7 |
+
import ast
|
| 8 |
+
from util.vector_base import EmbeddingFunction, get_or_create_vector_base
|
| 9 |
+
from doubao_service import DouBaoService
|
| 10 |
+
from PROMPT_TEMPLATE import prompt_template
|
| 11 |
+
from util.Embeddings import TextEmb3LargeEmbedding
|
| 12 |
+
from langchain_core.documents import Document
|
| 13 |
+
from FlagEmbedding import FlagReranker
|
| 14 |
+
from retriever import retriever
|
| 15 |
+
import time
|
| 16 |
+
# from bm25s import BM25, tokenize
|
| 17 |
+
import contextlib
|
| 18 |
+
import io
|
| 19 |
+
|
| 20 |
+
import gradio as gr
|
| 21 |
+
import time
|
| 22 |
+
|
| 23 |
+
client = DouBaoService("DouBao128Pro")
|
| 24 |
+
embeddingmodel = TextEmb3LargeEmbedding(max_qpm=58)
|
| 25 |
+
embedding = EmbeddingFunction(embeddingmodel)
|
| 26 |
+
safeguard_vector_store = get_or_create_vector_base('safeguard_database', embedding)
|
| 27 |
+
|
| 28 |
+
# reranker_model = FlagReranker(
|
| 29 |
+
# 'C://Users//Admin//Desktop//PDPO//NLL_LLM//model//bge-reranker-v2-m3',
|
| 30 |
+
# use_fp16=True,
|
| 31 |
+
# devices=["cpu"],
|
| 32 |
+
# )
|
| 33 |
+
|
| 34 |
+
OPTIONS = ['AI Governance',
|
| 35 |
+
'Data Accuracy',
|
| 36 |
+
'Data Minimization & Purpose Limitation',
|
| 37 |
+
'Data Retention',
|
| 38 |
+
'Data Security',
|
| 39 |
+
'Data Sharing',
|
| 40 |
+
'Individual Rights',
|
| 41 |
+
'Privacy by Design',
|
| 42 |
+
'Transparency']
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def format_model_output(raw_output):
|
| 46 |
+
"""
|
| 47 |
+
处理模型输出:
|
| 48 |
+
- 将 \n 转换为实际换行
|
| 49 |
+
- 提取 ```json ``` 中的内容并格式化为可折叠的 JSON
|
| 50 |
+
"""
|
| 51 |
+
formatted = raw_output.replace('\\n', '\n')
|
| 52 |
+
def replace_json(match):
|
| 53 |
+
json_str = match.group(1).strip()
|
| 54 |
+
try:
|
| 55 |
+
json_obj = loads(json_str)
|
| 56 |
+
return f"```json\n{json.dumps(json_obj, indent=2, ensure_ascii=False)}\n```"
|
| 57 |
+
except JSONDecodeError:
|
| 58 |
+
return match.group(0)
|
| 59 |
+
|
| 60 |
+
formatted = re.sub(r'```json\n?(.*?)\n?```', replace_json, formatted, flags=re.DOTALL)
|
| 61 |
+
return ast.literal_eval(formatted)
|
| 62 |
+
|
| 63 |
+
def model_predict(input_text, if_split_po, topk, selected_items):
|
| 64 |
+
"""
|
| 65 |
+
selected_items: 用户选择的项目(可能是["All"]或具体PO)
|
| 66 |
+
"""
|
| 67 |
+
requirement = input_text
|
| 68 |
+
requirement = requirement.replace("\t", "").replace("\n", "").replace("\r", "")
|
| 69 |
+
if "All" in selected_items:
|
| 70 |
+
PO = OPTIONS
|
| 71 |
+
else:
|
| 72 |
+
PO = selected_items
|
| 73 |
+
if topk:
|
| 74 |
+
topk = int(topk)
|
| 75 |
+
else:
|
| 76 |
+
topk = 10
|
| 77 |
+
final_result = retriever(
|
| 78 |
+
requirement,
|
| 79 |
+
PO,
|
| 80 |
+
safeguard_vector_store,
|
| 81 |
+
reranker_model=None,
|
| 82 |
+
using_reranker=False,
|
| 83 |
+
using_BM25=False,
|
| 84 |
+
using_chroma=True,
|
| 85 |
+
k=topk,
|
| 86 |
+
if_split_po=if_split_po
|
| 87 |
+
)
|
| 88 |
+
mapping_safeguards = {}
|
| 89 |
+
for safeguard in final_result:
|
| 90 |
+
if safeguard[3] not in mapping_safeguards:
|
| 91 |
+
mapping_safeguards[safeguard[3]] = []
|
| 92 |
+
mapping_safeguards[safeguard[3]].append(
|
| 93 |
+
{
|
| 94 |
+
"Score": safeguard[0],
|
| 95 |
+
"Safeguard Number": safeguard[1],
|
| 96 |
+
"Safeguard Description": safeguard[2]
|
| 97 |
+
}
|
| 98 |
+
)
|
| 99 |
+
prompt = prompt_template(requirement, mapping_safeguards)
|
| 100 |
+
response = client.chat_complete(messages=[
|
| 101 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 102 |
+
{"role": "user", "content": prompt},
|
| 103 |
+
])
|
| 104 |
+
# return {"requirement": requirement, "safeguards": mapping_safeguards}
|
| 105 |
+
print("requirement:", requirement)
|
| 106 |
+
print("mapping safeguards:", mapping_safeguards)
|
| 107 |
+
print("response:", response)
|
| 108 |
+
return {"requirement": requirement, "safeguards": format_model_output(response)}
|
| 109 |
+
|
| 110 |
+
with gr.Blocks(title="New Law Landing") as demo:
|
| 111 |
+
gr.Markdown("## 🏙️ New Law Landing")
|
| 112 |
+
|
| 113 |
+
requirement = gr.Textbox(label="Input Requirements", placeholder="Example: Data Minimization Consent for incompatible purposes")
|
| 114 |
+
details = gr.Textbox(label="Input Details", placeholder="Example: Require consent for...")
|
| 115 |
+
|
| 116 |
+
# 修改为 Number 输入组件
|
| 117 |
+
topk = gr.Number(
|
| 118 |
+
label="Top K safeguards",
|
| 119 |
+
value=10,
|
| 120 |
+
precision=0,
|
| 121 |
+
minimum=1,
|
| 122 |
+
interactive=True
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column(scale=1):
|
| 127 |
+
if_split_po = gr.Checkbox(
|
| 128 |
+
label="If Split Privacy Objective",
|
| 129 |
+
value=True,
|
| 130 |
+
info="Recall K Safeguards for each Privacy Objective"
|
| 131 |
+
)
|
| 132 |
+
with gr.Column(scale=1):
|
| 133 |
+
all_checkbox = gr.Checkbox(
|
| 134 |
+
label="ALL Privacy Objective",
|
| 135 |
+
value=True,
|
| 136 |
+
info="No specific Privacy Objective is specified"
|
| 137 |
+
)
|
| 138 |
+
with gr.Column(scale=4):
|
| 139 |
+
PO_checklist = gr.CheckboxGroup(
|
| 140 |
+
label="Choose Privacy Objective",
|
| 141 |
+
choices=OPTIONS,
|
| 142 |
+
value=[],
|
| 143 |
+
interactive=True
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
| 147 |
+
result_output = gr.JSON(label="Related safeguards", open=True)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def sync_checkboxes(selected_items, all_selected):
|
| 151 |
+
if len(selected_items) > 0:
|
| 152 |
+
return False
|
| 153 |
+
return all_selected
|
| 154 |
+
|
| 155 |
+
PO_checklist.change(
|
| 156 |
+
fn=sync_checkboxes,
|
| 157 |
+
inputs=[PO_checklist, all_checkbox],
|
| 158 |
+
outputs=all_checkbox
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def sync_all(selected_all, current_selection):
|
| 162 |
+
if selected_all:
|
| 163 |
+
return []
|
| 164 |
+
return current_selection
|
| 165 |
+
|
| 166 |
+
all_checkbox.change(
|
| 167 |
+
fn=sync_all,
|
| 168 |
+
inputs=[all_checkbox, PO_checklist],
|
| 169 |
+
outputs=PO_checklist
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
def process_inputs(requirement, details, topk, if_split_po, all_selected, PO_selected):
|
| 173 |
+
input_text = requirement + ": " + details
|
| 174 |
+
if all_selected:
|
| 175 |
+
return model_predict(input_text, if_split_po, int(topk), ["All"])
|
| 176 |
+
else:
|
| 177 |
+
return model_predict(input_text, if_split_po, int(topk), PO_selected)
|
| 178 |
+
|
| 179 |
+
submit_btn.click(
|
| 180 |
+
fn=process_inputs,
|
| 181 |
+
inputs=[requirement, details, topk, if_split_po, all_checkbox, PO_checklist],
|
| 182 |
+
outputs=[result_output]
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
if __name__ == "__main__":
|
| 186 |
demo.launch(share=True)
|