Spaces:
Running
on
Zero
Running
on
Zero
| import copy | |
| import math | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| import utils | |
| from accelerate import Accelerator | |
| from diffusers import StableDiffusionPipeline | |
| from diffusers.image_processor import PipelineImageInput | |
| from losses import * | |
| from tqdm import tqdm | |
| class ADPipeline(StableDiffusionPipeline): | |
| def freeze(self): | |
| self.vae.requires_grad_(False) | |
| self.unet.requires_grad_(False) | |
| self.text_encoder.requires_grad_(False) | |
| self.classifier.requires_grad_(False) | |
| def image2latent(self, image): | |
| dtype = next(self.vae.parameters()).dtype | |
| device = self._execution_device | |
| image = image.to(device=device, dtype=dtype) * 2.0 - 1.0 | |
| latent = self.vae.encode(image)["latent_dist"].mean | |
| latent = latent * self.vae.config.scaling_factor | |
| return latent | |
| def latent2image(self, latent): | |
| dtype = next(self.vae.parameters()).dtype | |
| device = self._execution_device | |
| latent = latent.to(device=device, dtype=dtype) | |
| latent = latent / self.vae.config.scaling_factor | |
| image = self.vae.decode(latent)[0] | |
| return (image * 0.5 + 0.5).clamp(0, 1) | |
| def init(self, enable_gradient_checkpoint): | |
| self.freeze() | |
| weight_dtype = torch.float32 | |
| if self.accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif self.accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move unet, vae and text_encoder to device and cast to weight_dtype | |
| self.unet.to(self.accelerator.device, dtype=weight_dtype) | |
| self.vae.to(self.accelerator.device, dtype=weight_dtype) | |
| self.text_encoder.to(self.accelerator.device, dtype=weight_dtype) | |
| self.classifier.to(self.accelerator.device, dtype=weight_dtype) | |
| self.classifier = self.accelerator.prepare(self.classifier) | |
| if enable_gradient_checkpoint: | |
| self.classifier.enable_gradient_checkpointing() | |
| def sample( | |
| self, | |
| lr=0.05, | |
| iters=1, | |
| attn_scale=1, | |
| adain=False, | |
| weight=0.25, | |
| controller=None, | |
| style_image=None, | |
| content_image=None, | |
| mixed_precision="no", | |
| start_time=999, | |
| enable_gradient_checkpoint=False, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| clip_skip: Optional[int] = None, | |
| **kwargs, | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._interrupt = False | |
| self.accelerator = Accelerator( | |
| mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
| ) | |
| self.init(enable_gradient_checkpoint) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) | |
| if self.cross_attention_kwargs is not None | |
| else None | |
| ) | |
| do_cfg = guidance_scale > 1.0 | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_cfg, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if do_cfg: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| do_cfg, | |
| ) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = ( | |
| {"image_embeds": image_embeds} | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) | |
| else None | |
| ) | |
| # 6.2 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
| batch_size * num_images_per_prompt | |
| ) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| timesteps = self.scheduler.timesteps | |
| self.style_latent = self.image2latent(style_image) | |
| if content_image is not None: | |
| self.content_latent = self.image2latent(content_image) | |
| else: | |
| self.content_latent = None | |
| null_embeds = self.encode_prompt("", device, 1, False)[0] | |
| self.null_embeds = null_embeds | |
| self.null_embeds_for_latents = torch.cat([null_embeds] * latents.shape[0]) | |
| self.null_embeds_for_style = torch.cat( | |
| [null_embeds] * self.style_latent.shape[0] | |
| ) | |
| self.adain = adain | |
| self.attn_scale = attn_scale | |
| self.cache = utils.DataCache() | |
| self.controller = controller | |
| utils.register_attn_control( | |
| self.classifier, controller=self.controller, cache=self.cache | |
| ) | |
| print("Total self attention layers of Unet: ", controller.num_self_layers) | |
| print("Self attention layers for AD: ", controller.self_layers) | |
| pbar = tqdm(timesteps, desc="Sample") | |
| for i, t in enumerate(pbar): | |
| with torch.no_grad(): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_cfg else latents | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_cfg: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, return_dict=False | |
| )[0] | |
| if iters > 0 and t < start_time: | |
| latents = self.AD(latents, t, lr, iters, pbar, weight) | |
| images = self.latent2image(latents) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return images | |
| def optimize( | |
| self, | |
| latents=None, | |
| attn_scale=1.0, | |
| lr=0.05, | |
| iters=1, | |
| weight=0, | |
| width=512, | |
| height=512, | |
| batch_size=1, | |
| controller=None, | |
| style_image=None, | |
| content_image=None, | |
| mixed_precision="no", | |
| num_inference_steps=50, | |
| enable_gradient_checkpoint=False, | |
| source_mask=None, | |
| target_mask=None, | |
| ): | |
| height = height // self.vae_scale_factor | |
| width = width // self.vae_scale_factor | |
| self.accelerator = Accelerator( | |
| mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
| ) | |
| self.init(enable_gradient_checkpoint) | |
| style_latent = self.image2latent(style_image) | |
| latents = torch.randn((batch_size, 4, height, width), device=self.device) | |
| null_embeds = self.encode_prompt("", self.device, 1, False)[0] | |
| null_embeds_for_latents = null_embeds.repeat(latents.shape[0], 1, 1) | |
| null_embeds_for_style = null_embeds.repeat(style_latent.shape[0], 1, 1) | |
| if content_image is not None: | |
| content_latent = self.image2latent(content_image) | |
| latents = torch.cat([content_latent.clone()] * batch_size) | |
| null_embeds_for_content = null_embeds.repeat(content_latent.shape[0], 1, 1) | |
| self.cache = utils.DataCache() | |
| self.controller = controller | |
| utils.register_attn_control( | |
| self.classifier, controller=self.controller, cache=self.cache | |
| ) | |
| print("Total self attention layers of Unet: ", controller.num_self_layers) | |
| print("Self attention layers for AD: ", controller.self_layers) | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| timesteps = self.scheduler.timesteps | |
| latents = latents.detach().float() | |
| optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr) | |
| optimizer = self.accelerator.prepare(optimizer) | |
| pbar = tqdm(timesteps, desc="Optimize") | |
| for i, t in enumerate(pbar): | |
| # t = torch.tensor([1], device=self.device) | |
| with torch.no_grad(): | |
| qs_list, ks_list, vs_list, s_out_list = self.extract_feature( | |
| style_latent, | |
| t, | |
| null_embeds_for_style, | |
| ) | |
| if content_image is not None: | |
| qc_list, kc_list, vc_list, c_out_list = self.extract_feature( | |
| content_latent, | |
| t, | |
| null_embeds_for_content, | |
| ) | |
| for j in range(iters): | |
| style_loss = 0 | |
| content_loss = 0 | |
| optimizer.zero_grad() | |
| q_list, k_list, v_list, self_out_list = self.extract_feature( | |
| latents, | |
| t, | |
| null_embeds_for_latents, | |
| ) | |
| style_loss = ad_loss(q_list, ks_list, vs_list, self_out_list, scale=attn_scale, source_mask=source_mask, target_mask=target_mask) | |
| if content_image is not None: | |
| content_loss = q_loss(q_list, qc_list) | |
| # content_loss = qk_loss(q_list, k_list, qc_list, kc_list) | |
| # content_loss = qkv_loss(q_list, k_list, vc_list, c_out_list) | |
| loss = style_loss + content_loss * weight | |
| self.accelerator.backward(loss) | |
| optimizer.step() | |
| pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j) | |
| images = self.latent2image(latents) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return images | |
| def panorama( | |
| self, | |
| lr=0.05, | |
| iters=1, | |
| attn_scale=1, | |
| adain=False, | |
| controller=None, | |
| style_image=None, | |
| mixed_precision="no", | |
| enable_gradient_checkpoint=False, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 1, | |
| stride=8, | |
| view_batch_size: int = 16, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| clip_skip: Optional[int] = None, | |
| **kwargs, | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._interrupt = False | |
| self.accelerator = Accelerator( | |
| mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
| ) | |
| self.init(enable_gradient_checkpoint) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_cfg = guidance_scale > 1.0 | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) | |
| if cross_attention_kwargs is not None | |
| else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_cfg, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if do_cfg: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Define panorama grid and initialize views for synthesis. | |
| # prepare batch grid | |
| views = self.get_views_(height, width, window_size=64, stride=stride) | |
| views_batch = [ | |
| views[i : i + view_batch_size] | |
| for i in range(0, len(views), view_batch_size) | |
| ] | |
| print(len(views), len(views_batch), views_batch) | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len( | |
| views_batch | |
| ) | |
| count = torch.zeros_like(latents) | |
| value = torch.zeros_like(latents) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = ( | |
| {"image_embeds": image_embeds} | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
| else None | |
| ) | |
| # 7.2 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
| batch_size * num_images_per_prompt | |
| ) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| # 8. Denoising loop | |
| # Each denoising step also includes refinement of the latents with respect to the | |
| # views. | |
| timesteps = self.scheduler.timesteps | |
| self.style_latent = self.image2latent(style_image) | |
| self.content_latent = None | |
| null_embeds = self.encode_prompt("", device, 1, False)[0] | |
| self.null_embeds = null_embeds | |
| self.null_embeds_for_latents = torch.cat([null_embeds] * latents.shape[0]) | |
| self.null_embeds_for_style = torch.cat( | |
| [null_embeds] * self.style_latent.shape[0] | |
| ) | |
| self.adain = adain | |
| self.attn_scale = attn_scale | |
| self.cache = utils.DataCache() | |
| self.controller = controller | |
| utils.register_attn_control( | |
| self.classifier, controller=self.controller, cache=self.cache | |
| ) | |
| print("Total self attention layers of Unet: ", controller.num_self_layers) | |
| print("Self attention layers for AD: ", controller.self_layers) | |
| pbar = tqdm(timesteps, desc="Sample") | |
| for i, t in enumerate(pbar): | |
| count.zero_() | |
| value.zero_() | |
| # generate views | |
| # Here, we iterate through different spatial crops of the latents and denoise them. These | |
| # denoised (latent) crops are then averaged to produce the final latent | |
| # for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the | |
| # MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113 | |
| # Batch views denoise | |
| for j, batch_view in enumerate(views_batch): | |
| vb_size = len(batch_view) | |
| # get the latents corresponding to the current view coordinates | |
| latents_for_view = torch.cat( | |
| [ | |
| latents[:, :, h_start:h_end, w_start:w_end] | |
| for h_start, h_end, w_start, w_end in batch_view | |
| ] | |
| ) | |
| # rematch block's scheduler status | |
| self.scheduler.__dict__.update(views_scheduler_status[j]) | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| latents_for_view.repeat_interleave(2, dim=0) | |
| if do_cfg | |
| else latents_for_view | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # repeat prompt_embeds for batch | |
| prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) | |
| # predict the noise residual | |
| with torch.no_grad(): | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds_input, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_cfg: | |
| noise_pred_uncond, noise_pred_text = ( | |
| noise_pred[::2], | |
| noise_pred[1::2], | |
| ) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_denoised_batch = self.scheduler.step( | |
| noise_pred, t, latents_for_view, **extra_step_kwargs | |
| ).prev_sample | |
| if iters > 0: | |
| self.null_embeds_for_latents = torch.cat( | |
| [self.null_embeds] * noise_pred.shape[0] | |
| ) | |
| latents_denoised_batch = self.AD( | |
| latents_denoised_batch, t, lr, iters, pbar | |
| ) | |
| # save views scheduler status after sample | |
| views_scheduler_status[j] = copy.deepcopy(self.scheduler.__dict__) | |
| # extract value from batch | |
| for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip( | |
| latents_denoised_batch.chunk(vb_size), batch_view | |
| ): | |
| value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised | |
| count[:, :, h_start:h_end, w_start:w_end] += 1 | |
| # take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113 | |
| latents = torch.where(count > 0, value / count, value) | |
| images = self.latent2image(latents) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return images | |
| def AD(self, latents, t, lr, iters, pbar, weight=0): | |
| t = max( | |
| t | |
| - self.scheduler.config.num_train_timesteps | |
| // self.scheduler.num_inference_steps, | |
| torch.tensor([0], device=self.device), | |
| ) | |
| if self.adain: | |
| noise = torch.randn_like(self.style_latent) | |
| style_latent = self.scheduler.add_noise(self.style_latent, noise, t) | |
| latents = utils.adain(latents, style_latent) | |
| with torch.no_grad(): | |
| qs_list, ks_list, vs_list, s_out_list = self.extract_feature( | |
| self.style_latent, | |
| t, | |
| self.null_embeds_for_style, | |
| add_noise=True, | |
| ) | |
| if self.content_latent is not None: | |
| qc_list, kc_list, vc_list, c_out_list = self.extract_feature( | |
| self.content_latent, | |
| t, | |
| self.null_embeds, | |
| add_noise=True, | |
| ) | |
| latents = latents.detach() | |
| optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr) | |
| optimizer = self.accelerator.prepare(optimizer) | |
| for j in range(iters): | |
| style_loss = 0 | |
| content_loss = 0 | |
| optimizer.zero_grad() | |
| q_list, k_list, v_list, self_out_list = self.extract_feature( | |
| latents, | |
| t, | |
| self.null_embeds_for_latents, | |
| add_noise=False, | |
| ) | |
| style_loss = ad_loss(q_list, ks_list, vs_list, self_out_list, scale=self.attn_scale) | |
| if self.content_latent is not None: | |
| content_loss = q_loss(q_list, qc_list) | |
| # content_loss = qk_loss(q_list, k_list, qc_list, kc_list) | |
| # content_loss = qkv_loss(q_list, k_list, vc_list, c_out_list) | |
| loss = style_loss + content_loss * weight | |
| self.accelerator.backward(loss) | |
| optimizer.step() | |
| pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j) | |
| latents = latents.detach() | |
| return latents | |
| def extract_feature( | |
| self, | |
| latent, | |
| t, | |
| embeds, | |
| add_noise=False, | |
| ): | |
| self.cache.clear() | |
| self.controller.step() | |
| if add_noise: | |
| noise = torch.randn_like(latent) | |
| latent_ = self.scheduler.add_noise(latent, noise, t) | |
| else: | |
| latent_ = latent | |
| _ = self.classifier(latent_, t, embeds)[0] | |
| return self.cache.get() | |
| def get_views_( | |
| self, | |
| panorama_height: int, | |
| panorama_width: int, | |
| window_size: int = 64, | |
| stride: int = 8, | |
| ) -> List[Tuple[int, int, int, int]]: | |
| panorama_height //= 8 | |
| panorama_width //= 8 | |
| num_blocks_height = ( | |
| math.ceil((panorama_height - window_size) / stride) + 1 | |
| if panorama_height > window_size | |
| else 1 | |
| ) | |
| num_blocks_width = ( | |
| math.ceil((panorama_width - window_size) / stride) + 1 | |
| if panorama_width > window_size | |
| else 1 | |
| ) | |
| views = [] | |
| for i in range(int(num_blocks_height)): | |
| for j in range(int(num_blocks_width)): | |
| h_start = int(min(i * stride, panorama_height - window_size)) | |
| w_start = int(min(j * stride, panorama_width - window_size)) | |
| h_end = h_start + window_size | |
| w_end = w_start + window_size | |
| views.append((h_start, h_end, w_start, w_end)) | |
| return views | |