Spaces:
Runtime error
Runtime error
Include ROC-AUC table and improve 2D plots
Browse files
app.py
CHANGED
|
@@ -8,29 +8,33 @@ from datasets import load_dataset
|
|
| 8 |
|
| 9 |
import histos
|
| 10 |
|
| 11 |
-
|
| 12 |
dataset = load_dataset("cmpatino/optimal_observables", "train")
|
| 13 |
dataset_df = dataset["train"].to_pandas()
|
| 14 |
dataset_df["target"] = dataset_df["target"].map({0: "spin-OFF", 1: "spin-ON"})
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def get_plot(features, n_bins):
|
| 18 |
plotting_df = dataset_df.copy()
|
| 19 |
if len(features) == 1:
|
| 20 |
fig, ax = plt.subplots()
|
| 21 |
pos_samples = plotting_df[plotting_df["target"] == "spin-ON"][features[0]]
|
| 22 |
neg_samples = plotting_df[plotting_df["target"] == "spin-OFF"][features[0]]
|
| 23 |
-
|
| 24 |
-
if pos_samples.mean() >= neg_samples.mean():
|
| 25 |
-
y_true = np.concatenate(
|
| 26 |
-
[np.ones_like(pos_samples), np.zeros_like(neg_samples)], axis=0
|
| 27 |
-
)
|
| 28 |
-
roc_auc_score = metrics.roc_auc_score(y_true, y_score)
|
| 29 |
-
else:
|
| 30 |
-
y_true = np.concatenate(
|
| 31 |
-
[np.zeros_like(pos_samples), np.ones_like(neg_samples)], axis=0
|
| 32 |
-
)
|
| 33 |
-
roc_auc_score = metrics.roc_auc_score(y_true, y_score)
|
| 34 |
values = [
|
| 35 |
pos_samples,
|
| 36 |
neg_samples,
|
|
@@ -46,35 +50,73 @@ def get_plot(features, n_bins):
|
|
| 46 |
)
|
| 47 |
return fig
|
| 48 |
if len(features) == 2:
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
x=features[0],
|
| 52 |
y=features[1],
|
| 53 |
-
hue="target",
|
| 54 |
bins=n_bins,
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
|
| 60 |
with gr.Blocks() as demo:
|
| 61 |
-
with gr.
|
| 62 |
-
with gr.
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
features.change(
|
| 80 |
get_plot,
|
|
|
|
| 8 |
|
| 9 |
import histos
|
| 10 |
|
|
|
|
| 11 |
dataset = load_dataset("cmpatino/optimal_observables", "train")
|
| 12 |
dataset_df = dataset["train"].to_pandas()
|
| 13 |
dataset_df["target"] = dataset_df["target"].map({0: "spin-OFF", 1: "spin-ON"})
|
| 14 |
|
| 15 |
|
| 16 |
+
def get_roc_auc_scores(pos_samples, neg_samples):
|
| 17 |
+
y_score = np.concatenate([pos_samples, neg_samples], axis=0)
|
| 18 |
+
if pos_samples.mean() >= neg_samples.mean():
|
| 19 |
+
y_true = np.concatenate(
|
| 20 |
+
[np.ones_like(pos_samples), np.zeros_like(neg_samples)], axis=0
|
| 21 |
+
)
|
| 22 |
+
roc_auc_score = metrics.roc_auc_score(y_true, y_score)
|
| 23 |
+
else:
|
| 24 |
+
y_true = np.concatenate(
|
| 25 |
+
[np.zeros_like(pos_samples), np.ones_like(neg_samples)], axis=0
|
| 26 |
+
)
|
| 27 |
+
roc_auc_score = metrics.roc_auc_score(y_true, y_score)
|
| 28 |
+
return roc_auc_score
|
| 29 |
+
|
| 30 |
+
|
| 31 |
def get_plot(features, n_bins):
|
| 32 |
plotting_df = dataset_df.copy()
|
| 33 |
if len(features) == 1:
|
| 34 |
fig, ax = plt.subplots()
|
| 35 |
pos_samples = plotting_df[plotting_df["target"] == "spin-ON"][features[0]]
|
| 36 |
neg_samples = plotting_df[plotting_df["target"] == "spin-OFF"][features[0]]
|
| 37 |
+
roc_auc_score = get_roc_auc_scores(pos_samples, neg_samples)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
values = [
|
| 39 |
pos_samples,
|
| 40 |
neg_samples,
|
|
|
|
| 50 |
)
|
| 51 |
return fig
|
| 52 |
if len(features) == 2:
|
| 53 |
+
fig, ax = plt.subplots(ncols=2, figsize=(12, 6))
|
| 54 |
+
pos_samples = plotting_df[plotting_df["target"] == "spin-ON"][features]
|
| 55 |
+
neg_samples = plotting_df[plotting_df["target"] == "spin-OFF"][features]
|
| 56 |
+
x_lims = (
|
| 57 |
+
min(pos_samples[features[0]].min(), neg_samples[features[0]].min()),
|
| 58 |
+
max(pos_samples[features[0]].max(), neg_samples[features[0]].max()),
|
| 59 |
+
)
|
| 60 |
+
y_lims = (
|
| 61 |
+
min(pos_samples[features[1]].min(), neg_samples[features[1]].min()),
|
| 62 |
+
max(pos_samples[features[1]].max(), neg_samples[features[1]].max()),
|
| 63 |
+
)
|
| 64 |
+
ranges = (x_lims, y_lims)
|
| 65 |
+
|
| 66 |
+
sns.histplot(
|
| 67 |
+
pos_samples,
|
| 68 |
x=features[0],
|
| 69 |
y=features[1],
|
|
|
|
| 70 |
bins=n_bins,
|
| 71 |
+
ax=ax[0],
|
| 72 |
+
color="C0",
|
| 73 |
+
binrange=ranges,
|
| 74 |
+
)
|
| 75 |
+
sns.histplot(
|
| 76 |
+
neg_samples,
|
| 77 |
+
x=features[0],
|
| 78 |
+
y=features[1],
|
| 79 |
+
bins=n_bins,
|
| 80 |
+
ax=ax[1],
|
| 81 |
+
color="C1",
|
| 82 |
+
binrange=ranges,
|
| 83 |
+
)
|
| 84 |
+
ax[0].set_title("spin-ON")
|
| 85 |
+
ax[1].set_title("spin-OFF")
|
| 86 |
+
return fig
|
| 87 |
|
| 88 |
|
| 89 |
with gr.Blocks() as demo:
|
| 90 |
+
with gr.Tab("Plots"):
|
| 91 |
+
with gr.Column():
|
| 92 |
+
with gr.Row():
|
| 93 |
+
features = gr.Dropdown(
|
| 94 |
+
choices=dataset_df.columns.to_list(),
|
| 95 |
+
label="Feature",
|
| 96 |
+
value="m_tt",
|
| 97 |
+
multiselect=True,
|
| 98 |
+
)
|
| 99 |
+
n_bins = gr.Slider(
|
| 100 |
+
label="Number of Bins for Histogram",
|
| 101 |
+
value=10,
|
| 102 |
+
minimum=10,
|
| 103 |
+
maximum=100,
|
| 104 |
+
step=10,
|
| 105 |
+
)
|
| 106 |
|
| 107 |
+
feature_plot = gr.Plot(label="Feature's Plot")
|
| 108 |
+
with gr.Tab("ROC-AUC Table"):
|
| 109 |
+
roc_auc_values = []
|
| 110 |
+
for feature in dataset_df.columns.to_list():
|
| 111 |
+
if feature in ["target", "reco_weight"]:
|
| 112 |
+
continue
|
| 113 |
+
pos_samples = dataset_df[dataset_df["target"] == "spin-ON"][feature]
|
| 114 |
+
neg_samples = dataset_df[dataset_df["target"] == "spin-OFF"][feature]
|
| 115 |
+
roc_auc_score = get_roc_auc_scores(pos_samples, neg_samples)
|
| 116 |
+
roc_auc_values.append([feature, roc_auc_score])
|
| 117 |
+
roc_auc_table = gr.Dataframe(
|
| 118 |
+
label="ROC-AUC Table", headers=["Feature", "ROC-AUC"], value=roc_auc_values
|
| 119 |
+
)
|
| 120 |
|
| 121 |
features.change(
|
| 122 |
get_plot,
|