Spaces:
Runtime error
Runtime error
| from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel | |
| from diffusers.utils import load_image | |
| from diffusers import ( | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ) | |
| import torch | |
| import os | |
| import random | |
| import numpy as np | |
| from PIL import Image | |
| from typing import Tuple | |
| import gradio as gr | |
| import spaces | |
| DESCRIPTION = """ | |
| # CosmicMan | |
| - CosmicMan: A Text-to-Image Foundation Model for Humans (CVPR 2024 (Highlight)) | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| schedule_map = { | |
| "ddim" : DDIMScheduler, | |
| "pndm" : PNDMScheduler, | |
| "lms" : LMSDiscreteScheduler, | |
| "euler" : EulerDiscreteScheduler, | |
| "euler_a": EulerAncestralDiscreteScheduler, | |
| "dpm" : DPMSolverMultistepScheduler, | |
| } | |
| examples = [ | |
| "A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot", | |
| "A closeup of a doll with a purple ribbon around her neck, best quality, extremely detailed", | |
| "A closeup of a girl with a butterfly painted on her face", | |
| "A headshot, an asian elderly male, a blue wall, bald above eyes gray hair", | |
| "A closeup portrait shot against a white wall, a fit Caucasian adult female with wavy blonde hair falling above her chest wears a short sleeve silk floral dress and a floral silk normal short sleeve white blouse", | |
| "A headshot, an adult caucasian male, fit, a white wall, red crew cut curly hair, short sleeve normal blue t-shirt, best quality, extremely detailed", | |
| "A closeup of a man wearing a red shirt with a flower design on it", | |
| "There is a man wearing a mask and holding a cell phone", | |
| "Two boys playing in the yard", | |
| ] | |
| style_list = [ | |
| { | |
| "name": "(No style)", | |
| "prompt": "{prompt}", | |
| "negative_prompt": "", | |
| }, | |
| { | |
| "name": "Cinematic", | |
| "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
| "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
| }, | |
| { | |
| "name": "Photographic", | |
| "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
| "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
| }, | |
| { | |
| "name": "Anime", | |
| "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
| "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
| }, | |
| { | |
| "name": "Fantasy art", | |
| "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
| "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
| }, | |
| { | |
| "name": "Neonpunk", | |
| "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
| "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
| } | |
| ] | |
| styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
| STYLE_NAMES = list(styles.keys()) | |
| DEFAULT_STYLE_NAME = "(No style)" | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| NUM_IMAGES_PER_PROMPT = 1 | |
| def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: | |
| p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
| if not negative: | |
| negative = "" | |
| return p.replace("{prompt}", positive), n + negative | |
| class NoWatermark: | |
| def apply_watermark(self, img): | |
| return img | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| print("Loading Model!") | |
| schedule: str = "euler_a" | |
| base_model_path: str = "stabilityai/stable-diffusion-xl-base-1.0" | |
| refiner_model_path: str = "stabilityai/stable-diffusion-xl-refiner-1.0" | |
| unet_path: str = "cosmicman/CosmicMan-SDXL" | |
| SCHEDULER = schedule_map[schedule] | |
| scheduler = SCHEDULER.from_pretrained(base_model_path, subfolder="scheduler", torch_dtype=torch.float16) | |
| unet = UNet2DConditionModel.from_pretrained(unet_path, torch_dtype=torch.float16) | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| base_model_path, | |
| unet=unet, | |
| scheduler=scheduler, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True | |
| ).to("cuda") | |
| pipe.watermark = NoWatermark() | |
| refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
| base_model_path, # we found use base_model_path instead of refiner_model_path may get a better performance | |
| scheduler=scheduler, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True | |
| ).to("cuda") | |
| refiner.watermark = NoWatermark() | |
| print("Finish Loading Model!") | |
| def generate_image(prompt, | |
| n_prompt="", | |
| style: str = DEFAULT_STYLE_NAME, | |
| steps: int = 50, | |
| height: int = 1024, | |
| width: int = 1024, | |
| scale: float = 7.5, | |
| img_num: int = 4, | |
| seeds: int = 42, | |
| random_seed: bool = False, | |
| ): | |
| print("Beign to generate") | |
| image_list = [] | |
| for i in range(img_num): | |
| seed = int(randomize_seed_fn(seeds, random_seed)) | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| positive_prompt, negative_prompt = apply_style(style, prompt, n_prompt) | |
| image = pipe(positive_prompt, num_inference_steps=steps, | |
| guidance_scale=scale, height=height, | |
| width=width, negative_prompt=negative_prompt, | |
| generator=generator, output_type="latent").images[0] | |
| image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0] | |
| image_list.append((image,f"Seed {seed}")) | |
| return image_list | |
| with gr.Blocks(theme=gr.themes.Soft(),css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Group(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_prompt = gr.Textbox(label="Input prompt", lines=3, max_lines=5) | |
| negative_prompt = gr.Textbox(label="Negative prompt",value="") | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery(label="Result", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto") | |
| with gr.Accordion("Advanced options", open=False): | |
| with gr.Row(): | |
| style_selection = gr.Radio( | |
| show_label=True, | |
| container=True, | |
| interactive=True, | |
| choices=STYLE_NAMES, | |
| value=DEFAULT_STYLE_NAME, | |
| label="Image Style", | |
| ) | |
| with gr.Row(): | |
| height = gr.Slider(minimum=512, maximum=1536, value=1024, label="Height", step=64) | |
| width = gr.Slider(minimum=512, maximum=1536, value=1024, label="Witdh", step=64) | |
| with gr.Row(): | |
| steps = gr.Slider(minimum=1, maximum=50, value=30, label="Number of diffusion steps", step=1) | |
| scale = gr.Number(minimum=1, maximum=12, value=7.5, label="Number of scale") | |
| with gr.Row(): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| random_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| img_num = gr.Slider(minimum=1, maximum=4, value=4, label="Number of images", step=1) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=input_prompt, | |
| outputs=result, | |
| fn=generate_image, | |
| cache_examples=0, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| input_prompt.submit, | |
| negative_prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate_image, | |
| inputs = [input_prompt, negative_prompt, style_selection, steps, height, width, scale, img_num, seed, random_seed], | |
| outputs= result, | |
| api_name="run") | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(show_api=False, debug=False) | |