Update main.py
Browse files
main.py
CHANGED
|
@@ -48,13 +48,7 @@ async def VectorDatabase(categorie):
|
|
| 48 |
@cl.step(type="retrieval")
|
| 49 |
async def Retriever(categorie):
|
| 50 |
vectorstore = await VectorDatabase(categorie)
|
| 51 |
-
if categorie == "
|
| 52 |
-
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 150,"filter": {'categorie': {'$eq': categorie}}})
|
| 53 |
-
elif categorie == "year":
|
| 54 |
-
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 6,"filter": {'year': {'$gte': 2019}}})
|
| 55 |
-
elif categorie == "skills":
|
| 56 |
-
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 200,"filter": {'file': {'$eq': 'competences-master-CFA.csv'}}})
|
| 57 |
-
elif categorie == "videosTC":
|
| 58 |
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 200,"filter": {"title": {"$eq": "videos-confinement-timeline"}}})
|
| 59 |
return retriever
|
| 60 |
|
|
@@ -128,7 +122,7 @@ async def set_starters():
|
|
| 128 |
async def on_message(message: cl.Message):
|
| 129 |
await cl.Message(f"> EVENTIA").send()
|
| 130 |
model = await LLModel()
|
| 131 |
-
retriever = await Retriever(
|
| 132 |
########## Chain with streaming ##########
|
| 133 |
message_history = ChatMessageHistory()
|
| 134 |
memory = ConversationBufferMemory(memory_key="chat_history",output_key="answer",chat_memory=message_history,return_messages=True)
|
|
@@ -174,24 +168,6 @@ async def on_message(message: cl.Message):
|
|
| 174 |
|
| 175 |
#search = vectorstore.similarity_search(message.content,k=50, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}})
|
| 176 |
search = await Search(message.content, "videosTC")
|
| 177 |
-
|
| 178 |
-
#os.environ["GOOGLE_CSE_ID"] = os.getenv('GOOGLE_CSE_ID')
|
| 179 |
-
#os.environ["GOOGLE_API_KEY"] = os.getenv('GOOGLE_API_KEY')
|
| 180 |
-
#searchAPI = GoogleSearchAPIWrapper()
|
| 181 |
-
#def top5_results(query):
|
| 182 |
-
# return searchAPI.results(query, 5)
|
| 183 |
-
|
| 184 |
-
#tool = Tool(
|
| 185 |
-
# name="Google Search Snippets",
|
| 186 |
-
# description="Search Google for recent results.",
|
| 187 |
-
# func=top5_results,
|
| 188 |
-
#)
|
| 189 |
-
#query = str(message.content)
|
| 190 |
-
#ref_text = tool.run(query)
|
| 191 |
-
#if 'Result' not in ref_text[0].keys():
|
| 192 |
-
# print(ref_text)
|
| 193 |
-
#else:
|
| 194 |
-
# print('None')
|
| 195 |
|
| 196 |
sources = [
|
| 197 |
cl.Text(name="Sources", content=search[0], display="inline")
|
|
|
|
| 48 |
@cl.step(type="retrieval")
|
| 49 |
async def Retriever(categorie):
|
| 50 |
vectorstore = await VectorDatabase(categorie)
|
| 51 |
+
if categorie == "videosTC":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 200,"filter": {"title": {"$eq": "videos-confinement-timeline"}}})
|
| 53 |
return retriever
|
| 54 |
|
|
|
|
| 122 |
async def on_message(message: cl.Message):
|
| 123 |
await cl.Message(f"> EVENTIA").send()
|
| 124 |
model = await LLModel()
|
| 125 |
+
retriever = await Retriever("videosTC")
|
| 126 |
########## Chain with streaming ##########
|
| 127 |
message_history = ChatMessageHistory()
|
| 128 |
memory = ConversationBufferMemory(memory_key="chat_history",output_key="answer",chat_memory=message_history,return_messages=True)
|
|
|
|
| 168 |
|
| 169 |
#search = vectorstore.similarity_search(message.content,k=50, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}})
|
| 170 |
search = await Search(message.content, "videosTC")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
sources = [
|
| 173 |
cl.Text(name="Sources", content=search[0], display="inline")
|