Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Gradio app for Sanskrit text transcription using Qwen2.5-VL model
|
| 4 |
+
Based on quick_test_improved.py
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
import base64
|
| 10 |
+
import io
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 13 |
+
from qwen_vl_utils import process_vision_info
|
| 14 |
+
from peft import PeftModel
|
| 15 |
+
import os
|
| 16 |
+
import logging
|
| 17 |
+
import spaces
|
| 18 |
+
|
| 19 |
+
# Set up logging
|
| 20 |
+
logging.basicConfig(level=logging.INFO)
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
class SanskritTranscriptionModel:
|
| 24 |
+
def __init__(self, model_path: str, adapter_path: str = None):
|
| 25 |
+
"""Initialize the model and processor"""
|
| 26 |
+
self.model_path = model_path
|
| 27 |
+
self.adapter_path = adapter_path
|
| 28 |
+
self.model = None
|
| 29 |
+
self.processor = None
|
| 30 |
+
self.is_loaded = False
|
| 31 |
+
|
| 32 |
+
def load_model(self):
|
| 33 |
+
"""Load the model and processor"""
|
| 34 |
+
if self.is_loaded:
|
| 35 |
+
return
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
logger.info("Loading processor...")
|
| 39 |
+
self.processor = AutoProcessor.from_pretrained(self.model_path)
|
| 40 |
+
|
| 41 |
+
logger.info("Loading base model...")
|
| 42 |
+
# Check if CUDA is available, otherwise use CPU
|
| 43 |
+
device_map = "auto" if torch.cuda.is_available() else "cpu"
|
| 44 |
+
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 45 |
+
self.model_path,
|
| 46 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 47 |
+
device_map=device_map
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if self.adapter_path and os.path.exists(self.adapter_path):
|
| 51 |
+
logger.info("Loading LoRA adapters...")
|
| 52 |
+
self.model = PeftModel.from_pretrained(self.model, self.adapter_path)
|
| 53 |
+
else:
|
| 54 |
+
logger.info("No adapter path found, using base model only")
|
| 55 |
+
|
| 56 |
+
self.model.eval()
|
| 57 |
+
device = next(self.model.parameters()).device
|
| 58 |
+
logger.info(f"Model loaded on device: {device}")
|
| 59 |
+
self.is_loaded = True
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
logger.error(f"Error loading model: {e}")
|
| 63 |
+
raise e
|
| 64 |
+
|
| 65 |
+
def transcribe_image(self, image: Image.Image, prompt: str = None) -> str:
|
| 66 |
+
"""Transcribe Sanskrit text from image"""
|
| 67 |
+
if not self.is_loaded:
|
| 68 |
+
self.load_model()
|
| 69 |
+
|
| 70 |
+
if prompt is None:
|
| 71 |
+
prompt = "Please transcribe the Sanskrit text shown in this image:"
|
| 72 |
+
|
| 73 |
+
try:
|
| 74 |
+
messages = [
|
| 75 |
+
{
|
| 76 |
+
"role": "user",
|
| 77 |
+
"content": [
|
| 78 |
+
{"type": "image", "image": image},
|
| 79 |
+
{"type": "text", "text": prompt}
|
| 80 |
+
]
|
| 81 |
+
}
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
# Preparation for inference
|
| 85 |
+
text = self.processor.apply_chat_template(
|
| 86 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 87 |
+
)
|
| 88 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 89 |
+
inputs = self.processor(
|
| 90 |
+
text=[text],
|
| 91 |
+
images=image_inputs,
|
| 92 |
+
videos=video_inputs,
|
| 93 |
+
padding=True,
|
| 94 |
+
return_tensors="pt",
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Get model device and move inputs there
|
| 98 |
+
model_device = next(self.model.parameters()).device
|
| 99 |
+
inputs = {k: v.to(model_device) for k, v in inputs.items()}
|
| 100 |
+
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
generated_ids = self.model.generate(
|
| 103 |
+
**inputs,
|
| 104 |
+
max_new_tokens=512,
|
| 105 |
+
do_sample=False,
|
| 106 |
+
pad_token_id=self.processor.tokenizer.eos_token_id,
|
| 107 |
+
use_cache=True,
|
| 108 |
+
repetition_penalty=1.1
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Extract only the generated part
|
| 112 |
+
generated_ids_trimmed = [
|
| 113 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs['input_ids'], generated_ids)
|
| 114 |
+
]
|
| 115 |
+
output_text = self.processor.batch_decode(
|
| 116 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
return output_text[0] if output_text else ""
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
logger.error(f"Error generating response: {e}")
|
| 123 |
+
return f"Error: {str(e)}"
|
| 124 |
+
|
| 125 |
+
# Initialize the model
|
| 126 |
+
model_instance = None
|
| 127 |
+
|
| 128 |
+
@spaces.GPU(duration=60) # 2 minutes for model loading and inference
|
| 129 |
+
def initialize_model():
|
| 130 |
+
"""Initialize the model instance with ZeroGPU support"""
|
| 131 |
+
global model_instance
|
| 132 |
+
if model_instance is None:
|
| 133 |
+
model_path = 'Qwen/Qwen2.5-VL-7B-Instruct'
|
| 134 |
+
adapter_path = './outputs/out-qwen2-5-vl'
|
| 135 |
+
model_instance = SanskritTranscriptionModel(model_path, adapter_path)
|
| 136 |
+
return model_instance
|
| 137 |
+
|
| 138 |
+
def check_model_status():
|
| 139 |
+
"""Check if model is loaded and ready"""
|
| 140 |
+
try:
|
| 141 |
+
model = initialize_model()
|
| 142 |
+
if model.is_loaded:
|
| 143 |
+
return "β
Model loaded and ready"
|
| 144 |
+
else:
|
| 145 |
+
return "β³ Model not loaded yet"
|
| 146 |
+
except Exception as e:
|
| 147 |
+
return f"β Model error: {str(e)}"
|
| 148 |
+
|
| 149 |
+
@spaces.GPU(duration=30) # 1 minute for transcription
|
| 150 |
+
def transcribe_sanskrit(image, custom_prompt, progress=gr.Progress()):
|
| 151 |
+
"""Gradio interface function for transcription with ZeroGPU support"""
|
| 152 |
+
if image is None:
|
| 153 |
+
return "Please upload an image first."
|
| 154 |
+
|
| 155 |
+
try:
|
| 156 |
+
progress(0.1, desc="Requesting GPU resources...")
|
| 157 |
+
model = initialize_model()
|
| 158 |
+
|
| 159 |
+
progress(0.3, desc="Processing image...")
|
| 160 |
+
# Use custom prompt if provided, otherwise use default
|
| 161 |
+
prompt = custom_prompt if custom_prompt.strip() else "Please transcribe the Sanskrit text shown in this image:"
|
| 162 |
+
|
| 163 |
+
progress(0.5, desc="Generating transcription...")
|
| 164 |
+
result = model.transcribe_image(image, prompt)
|
| 165 |
+
|
| 166 |
+
progress(1.0, desc="Complete!")
|
| 167 |
+
return result
|
| 168 |
+
|
| 169 |
+
except Exception as e:
|
| 170 |
+
logger.error(f"Error in transcribe_sanskrit: {e}")
|
| 171 |
+
return f"β Error occurred: {str(e)}\n\nPlease try again or check if the model files are properly loaded."
|
| 172 |
+
|
| 173 |
+
def create_gradio_interface():
|
| 174 |
+
"""Create and configure the Gradio interface"""
|
| 175 |
+
|
| 176 |
+
with gr.Blocks(
|
| 177 |
+
title="Sanskrit Text Transcription",
|
| 178 |
+
theme=gr.themes.Soft()
|
| 179 |
+
) as app:
|
| 180 |
+
|
| 181 |
+
gr.HTML("""
|
| 182 |
+
<div class="main-header">
|
| 183 |
+
<h1>ποΈ Sanskrit Text Transcription</h1>
|
| 184 |
+
<p>Upload an image containing Sanskrit text and get an accurate transcription using AI</p>
|
| 185 |
+
<p><strong>π Powered by ZeroGPU:</strong> Dynamic GPU allocation for efficient processing</p>
|
| 186 |
+
</div>
|
| 187 |
+
""")
|
| 188 |
+
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column(scale=1):
|
| 191 |
+
gr.Markdown("### Upload Image")
|
| 192 |
+
image_input = gr.Image(
|
| 193 |
+
type="pil",
|
| 194 |
+
label="Sanskrit Text Image",
|
| 195 |
+
height=400
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
gr.Markdown("### Custom Prompt (Optional)")
|
| 199 |
+
custom_prompt = gr.Textbox(
|
| 200 |
+
label="Custom transcription prompt",
|
| 201 |
+
placeholder="Please transcribe the Sanskrit text shown in this image:",
|
| 202 |
+
lines=2,
|
| 203 |
+
value="Please transcribe the Sanskrit text shown in this image:"
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
transcribe_btn = gr.Button(
|
| 207 |
+
"ποΈ Transcribe Sanskrit Text",
|
| 208 |
+
variant="primary",
|
| 209 |
+
size="lg"
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
gr.Markdown("""
|
| 213 |
+
### Instructions:
|
| 214 |
+
1. Upload an image containing Sanskrit text
|
| 215 |
+
2. Optionally modify the prompt for better results
|
| 216 |
+
3. Click the transcribe button
|
| 217 |
+
4. View the transcribed text below
|
| 218 |
+
""")
|
| 219 |
+
|
| 220 |
+
with gr.Column(scale=1):
|
| 221 |
+
gr.Markdown("### Transcription Result")
|
| 222 |
+
output_text = gr.Textbox(
|
| 223 |
+
label="Transcribed Sanskrit Text",
|
| 224 |
+
lines=10,
|
| 225 |
+
max_lines=20,
|
| 226 |
+
show_copy_button=True
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
gr.Markdown("### Model Information")
|
| 230 |
+
model_status = gr.Textbox(
|
| 231 |
+
label="Model Status",
|
| 232 |
+
value="Checking...",
|
| 233 |
+
interactive=False
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
check_status_btn = gr.Button("π Check Model Status", size="sm")
|
| 237 |
+
|
| 238 |
+
gr.Markdown("""
|
| 239 |
+
**Model:** Qwen2.5-VL-7B-Instruct with LoRA fine-tuning
|
| 240 |
+
|
| 241 |
+
**Features:**
|
| 242 |
+
- Multimodal vision-language model
|
| 243 |
+
- Fine-tuned on Sanskrit text data
|
| 244 |
+
- Supports various Sanskrit scripts
|
| 245 |
+
- High accuracy transcription
|
| 246 |
+
""")
|
| 247 |
+
|
| 248 |
+
# Example section
|
| 249 |
+
with gr.Row():
|
| 250 |
+
gr.Markdown("### Example Images")
|
| 251 |
+
|
| 252 |
+
# Event handlers
|
| 253 |
+
transcribe_btn.click(
|
| 254 |
+
fn=transcribe_sanskrit,
|
| 255 |
+
inputs=[image_input, custom_prompt],
|
| 256 |
+
outputs=output_text,
|
| 257 |
+
show_progress=True
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Auto-transcribe when image is uploaded
|
| 261 |
+
image_input.change(
|
| 262 |
+
fn=transcribe_sanskrit,
|
| 263 |
+
inputs=[image_input, custom_prompt],
|
| 264 |
+
outputs=output_text,
|
| 265 |
+
show_progress=True
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
# Model status check
|
| 269 |
+
check_status_btn.click(
|
| 270 |
+
fn=check_model_status,
|
| 271 |
+
outputs=model_status
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# Check model status on app load
|
| 275 |
+
app.load(
|
| 276 |
+
fn=check_model_status,
|
| 277 |
+
outputs=model_status
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
return app
|
| 281 |
+
|
| 282 |
+
def main():
|
| 283 |
+
"""Main function to launch the Gradio app"""
|
| 284 |
+
logger.info("Starting Sanskrit Transcription Gradio App...")
|
| 285 |
+
|
| 286 |
+
# Create the interface
|
| 287 |
+
app = create_gradio_interface()
|
| 288 |
+
|
| 289 |
+
# Launch the app
|
| 290 |
+
app.launch(
|
| 291 |
+
server_name="0.0.0.0", # Allow external access
|
| 292 |
+
server_port=7860, # Default Gradio port
|
| 293 |
+
share=False, # Enable request queuing
|
| 294 |
+
max_threads=4 # Limit concurrent requests
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
if __name__ == "__main__":
|
| 298 |
+
main()
|