Spaces:
Paused
Paused
| from functools import partial | |
| import torch | |
| import torch.utils._pytree as pytree | |
| from torch._C import DispatchKey, DispatchKeySet, ExcludeDispatchKeyGuard | |
| from torch._functorch.eager_transforms import _unwrap_all_tensors_from_functional, _wrap_all_tensors_to_functional, functionalize | |
| from torch._ops import PyOperator | |
| from torch._subclasses.fake_tensor import FakeTensorMode | |
| from torch.fx.experimental.proxy_tensor import ( | |
| disable_proxy_modes_tracing, | |
| make_fx, | |
| ProxyTorchDispatchMode, | |
| track_tensor_tree, | |
| unwrap_proxy, | |
| ) | |
| from torch.utils._python_dispatch import ( | |
| _get_current_dispatch_mode, | |
| _pop_mode_temporarily, | |
| ) | |
| from torch.utils._pytree import tree_flatten | |
| from ._cond import _has_potential_branch_input_alias, _has_potential_branch_input_mutation, UnsupportedAliasMutationException | |
| map = PyOperator("map") | |
| def trace_map(proxy_mode, func_overload, f, xs, *args): | |
| if not isinstance(xs, torch.Tensor): | |
| raise ValueError("map() must loop over a tensor") | |
| if len(xs.shape) == 0 or xs.shape[0] == 0: | |
| raise ValueError("map() cannot be traced with scalar tensors or zero dimension tensors") | |
| if not all(isinstance(o, torch.Tensor) for o in args): | |
| raise ValueError("map() operands must be a list of tensors or modules") | |
| with disable_proxy_modes_tracing(): | |
| body_graph = make_fx(f)(xs[0], *args) | |
| next_name = None | |
| i = 0 | |
| while not next_name: | |
| candidate = f"body_graph_{i}" | |
| if hasattr(proxy_mode.tracer.root, candidate): | |
| i += 1 | |
| else: | |
| next_name = candidate | |
| proxy_mode.tracer.root.register_module(next_name, body_graph) | |
| node_args = (body_graph, xs, *args) | |
| proxy_args = pytree.tree_map(partial(unwrap_proxy, proxy_mode), node_args) | |
| out_proxy = proxy_mode.tracer.create_proxy('call_function', func_overload, proxy_args, {}, | |
| name="map") | |
| outs = [body_graph(x, *args) for x in xs] | |
| # Implementation notes: we need to use new_empty() + copy_() here instead of stack() directly | |
| # because stack([...]) takes a fixed size list which will specialize dynamic shape here. | |
| # Meanwhile we want to preserve the looped over dimension as symbolic shape, such that: | |
| # ys: Tensor[s0, ...] = map(xs: Tensor[s0, ...], *args) | |
| out = outs[0].new_empty([xs.shape[0], *outs[0].shape]) | |
| out.copy_(torch.stack(outs)) | |
| return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer) | |
| def map_cpu(f, xs, *args): | |
| mode = _get_current_dispatch_mode() | |
| assert (mode is None), "Mode should never be enabled for CPU/CUDA key" | |
| return torch.stack([f(x, *args) for x in xs]) | |
| def map_autograd(f, xs, *args): | |
| # TODO: support autograd | |
| flat_operands, _ = tree_flatten([f, xs, args]) | |
| assert all([not f.requires_grad for f in flat_operands | |
| if isinstance(f, torch.Tensor)]) | |
| _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.AutogradCPU)) | |
| return map(f, xs, *args) | |
| def map_proxy_torch_dispatch_mode(f, xs, *args): | |
| mode = _get_current_dispatch_mode() | |
| assert (mode is not None), "Mode should always be enabled for python fallback key" | |
| with _pop_mode_temporarily() as mode: | |
| res = trace_map(mode, map, f, xs, *args) | |
| return res | |
| def map_fake_tensor_mode(f, xs, *args): | |
| outs = [f(x, *args) for x in xs] | |
| return outs[0].new_empty([xs.shape[0], *outs[0].shape]) | |
| # We cannot directly call fallthrough here due to issue #89037. | |
| def map_python_dispatcher(*args): | |
| _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.PythonDispatcher)) | |
| return map(*args) | |
| def map_functionalize(interpreter, f, xs, *args): | |
| """ | |
| Functionalization implementation for torch.map. Currently: | |
| 1. We don't allow any input mutation inside the map function | |
| 2. Our check for above condition is not exhaustive | |
| """ | |
| reapply_views = interpreter.functionalize_add_back_views() | |
| mode = 'mutations_and_views' if reapply_views else 'mutations' | |
| # At this point, we will see functionalized tensors, so need to unwrap them first | |
| unwrapped_xs = _unwrap_all_tensors_from_functional(xs, reapply_views=reapply_views) | |
| unwrapped_args = _unwrap_all_tensors_from_functional(args, reapply_views=reapply_views) | |
| functional_map_fn = functionalize(f, remove=mode) | |
| with interpreter.lower(): | |
| fake_tensor_mode = FakeTensorMode() | |
| with fake_tensor_mode as ft_mode: | |
| # Returns fake inputs for a single map function call | |
| def get_fake_inputs(unwrapped_xs, unwrapped_args): | |
| fake_xs = ft_mode.fake_tensor_converter(ft_mode, unwrapped_xs) | |
| fake_args = pytree.tree_map_only( | |
| torch.Tensor, | |
| lambda x: ft_mode.fake_tensor_converter(ft_mode, x), | |
| unwrapped_args, | |
| ) | |
| return (fake_xs[0],) + fake_args | |
| fake_inputs = get_fake_inputs(unwrapped_xs, unwrapped_args) | |
| if _has_potential_branch_input_mutation(functional_map_fn, fake_inputs): | |
| raise UnsupportedAliasMutationException( | |
| "torch.map is mutating the input!" | |
| ) | |
| if _has_potential_branch_input_alias(functional_map_fn, fake_inputs): | |
| raise UnsupportedAliasMutationException( | |
| "torch.map is aliasing the input!" | |
| ) | |
| map_return = map(functional_map_fn, unwrapped_xs, *unwrapped_args) | |
| return _wrap_all_tensors_to_functional(map_return, level=interpreter.level()) | |
| # TODO(voz) Make this automatic for keys, this is very ugly atm | |
| map.fallthrough(DispatchKey.PythonTLSSnapshot) | |
| map.fallthrough(DispatchKey.ADInplaceOrView) | |
| map.fallthrough(DispatchKey.BackendSelect) | |