Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from matplotlib import cm | |
| from PIL import Image | |
| import imageio | |
| generator = tf.keras.models.load_model('dc_gan.h5') | |
| def interpolate(steps,fps): | |
| #CHANGE LATER | |
| start = tf.random.normal(shape=(1,128)) | |
| end = tf.random.normal(shape=(1,128)) | |
| #--------------- | |
| input_vectors = np.squeeze(np.linspace(start,end,steps)) | |
| image_vectors = np.array(generator.predict(input_vectors)) | |
| writer = imageio.get_writer('test.mp4', fps=fps) | |
| for im in image_vectors: | |
| writer.append_data((im*255).astype('uint8')) | |
| writer.close() | |
| return gr.Video(value = 'test.mp4') | |
| demo = gr.Blocks() | |
| with demo: | |
| output_interpolation = gr.Video() | |
| STEPS = gr.Slider(1, 100, step=1,label="Steps") | |
| FPS = gr.Slider(1, 50, step=1,label="fps") | |
| btn = gr.Button("Submit") | |
| btn.click(interpolate, inputs=[STEPS ,FPS], outputs=[output_interpolation]) | |
| demo.launch() | |