File size: 9,860 Bytes
78e48a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

# ==============================
# Imports
# ==============================
import yfinance as yf
import pandas as pd
import traceback

# ==============================
# Yahoo Finance info fetch
# ==============================
def yfinfo(symbol):
    try:
        t = yf.Ticker(symbol)
        info = t.info
        if not info or not isinstance(info, dict):
            return {}
        return info
    except Exception as e:
        return {"__error__": str(e)}


# ==============================
# HTML card renderer
# ==============================
def html_card(title, body, mini=False):
    font = "12px" if mini else "14px"
    pad  = "6px" if mini else "10px"

    return f"""
    <div style="
        background:#111;
        border:1px solid #333;
        border-radius:6px;
        padding:{pad};
        margin:6px 0;
        color:#eee;
        font-size:{font};
    ">
        <div style="
            font-weight:600;
            color:#6cf;
            margin-bottom:4px;
        ">
            {title}
        </div>
        <div>{body}</div>
    </div>
    """


# ==============================
# DataFrame β†’ HTML table
# ==============================
def make_table(df, compact=False):
    if df is None or df.empty:
        return "<i>No data</i>"

    font = "11px" if compact else "13px"
    pad  = "2px 6px" if compact else "4px 8px"

    th = "".join(
        f"<th style='padding:{pad};border-bottom:1px solid #444'>{c}</th>"
        for c in df.columns
    )

    rows = ""
    for _, r in df.iterrows():
        tds = "".join(
            f"<td style='padding:{pad};border-bottom:1px solid #222'>{v}</td>"
            for v in r
        )
        rows += f"<tr>{tds}</tr>"

    return f"""
    <table style="
        width:100%;
        border-collapse:collapse;
        font-size:{font};
        color:#eee;
    ">
        <thead><tr>{th}</tr></thead>
        <tbody>{rows}</tbody>
    </table>
    """


# ==============================
# Number formatting
# ==============================
def format_number(x):
    try:
        if x is None:
            return "-"
        x = float(x)
        if abs(x) >= 100:
            return f"{x:,.0f}"
        if abs(x) >= 1:
            return f"{x:,.2f}"
        return f"{x:.4f}"
    except Exception:
        return str(x)


def format_large_number(x):
    try:
        x = float(x)
        for u in ["", "K", "M", "B", "T"]:
            if abs(x) < 1000:
                return f"{x:.2f}{u}"
            x /= 1000
        return f"{x:.2f}P"
    except Exception:
        return str(x)


# ==============================
# HTML error block
# ==============================
def html_error(msg):
    return f"""
    <div style="
        background:#300;
        color:#f88;
        border:1px solid #800;
        border-radius:6px;
        padding:10px;
        font-weight:600;
    ">
        ❌ {msg}
    </div>
    """
# ------------------------------------------------------------
# 1. Noise keys (internal Yahoo junk)
# ------------------------------------------------------------
NOISE_KEYS = {
    "maxAge", "priceHint", "triggerable",
    "customPriceAlertConfidence",
    "sourceInterval", "exchangeDataDelayedBy",
    "esgPopulated"
}

def is_noise(k):
    return k in NOISE_KEYS


# ------------------------------------------------------------
# 2. Duplicate resolution priority
# ------------------------------------------------------------
DUPLICATE_PRIORITY = {
    "price": ["regularMarketPrice", "currentPrice"],
    "prev": ["regularMarketPreviousClose", "previousClose"],
    "open": ["regularMarketOpen", "open"],
    "high": ["regularMarketDayHigh", "dayHigh"],
    "low": ["regularMarketDayLow", "dayLow"],
    "volume": ["regularMarketVolume", "volume"],
}

def resolve_duplicates(data):
    resolved = {}
    used = set()

    for _, keys in DUPLICATE_PRIORITY.items():
        for k in keys:
            if k in data:
                resolved[k] = data[k]
                used.update(keys)
                break

    for k, v in data.items():
        if k not in used:
            resolved[k] = v

    return resolved


# ------------------------------------------------------------
# 3. Short display names (<=12 chars)
# ------------------------------------------------------------
SHORT_NAMES = {
    "regularMarketPrice": "Price",
    "regularMarketChange": "Chg",
    "regularMarketChangePercent": "Chg%",
    "regularMarketPreviousClose": "Prev",
    "regularMarketOpen": "Open",
    "regularMarketDayHigh": "High",
    "regularMarketDayLow": "Low",

    "regularMarketVolume": "Vol",
    "averageDailyVolume10Day": "AvgV10",
    "averageDailyVolume3Month": "AvgV3M",

    "fiftyDayAverage": "50DMA",
    "fiftyDayAverageChangePercent": "50DMA%",
    "twoHundredDayAverage": "200DMA",
    "twoHundredDayAverageChangePercent": "200DMA%",

    "fiftyTwoWeekLow": "52WL",
    "fiftyTwoWeekHigh": "52WH",
    "fiftyTwoWeekRange": "52WR",

    "beta": "Beta",

    "targetHighPrice": "TgtH",
    "targetLowPrice": "TgtL",
    "targetMeanPrice": "Tgt",
    "recommendationMean": "Reco",
}

def pretty_key(k):
    return SHORT_NAMES.get(k, k[:12])


# ------------------------------------------------------------
# 4. Price / Volume sub-group classifier
# ------------------------------------------------------------
def classify_price_volume_subgroup(key):
    k = key.lower()

    if any(x in k for x in [
        "price", "open", "close", "change", "day"
    ]):
        return "Live Price"

    if "volume" in k:
        return "Volume"

    if "average" in k or "fiftyday" in k or "twohundredday" in k:
        return "Moving Avg"

    if any(x in k for x in ["week", "range", "high", "low", "alltime", "beta"]):
        return "Range / Vol"

    if any(x in k for x in ["bid", "ask", "target", "recommendation", "analyst"]):
        return "Bid / Analyst"

    return "Other"


def build_price_volume_subgroups(data):
    sub = {}
    for k, v in data.items():
        sg = classify_price_volume_subgroup(k)
        sub.setdefault(sg, {})[k] = v
    return sub


# ------------------------------------------------------------
# 5. Main key classifier
# ------------------------------------------------------------
def classify_key(key, value):
    k = key.lower()

    if isinstance(value, str) and len(value) > 80:
        return "long_text"

    if isinstance(value, (int, float)) and any(x in k for x in [
        "price", "volume", "avg", "average", "change",
        "percent", "market", "day", "week", "bid",
        "ask", "beta", "target", "recommendation"
    ]):
        return "price_volume"

    if any(x in k for x in [
        "revenue", "income", "earnings", "profit",
        "margin", "pe", "pb", "roe", "roa",
        "cash", "debt", "equity", "dividend",
        "ebitda", "growth", "ratio", "shares"
    ]):
        return "fundamental"

    return "profile"


# ------------------------------------------------------------
# 6. Group builder
# ------------------------------------------------------------
def build_grouped_info(info):
    groups = {
        "price_volume": {},
        "fundamental": {},
        "profile": {},
        "long_text": {}
    }

    for k, v in info.items():
        if v in [None, "", [], {}]:
            continue

        grp = classify_key(k, v)
        groups[grp][k] = v

    return groups


# ------------------------------------------------------------
# 7. Final DataFrame builder
# ------------------------------------------------------------
def build_df_from_dict(data):
    rows = []

    for k, v in data.items():
        if is_noise(k):
            continue

        if isinstance(v, (int, float)):
            v = format_number(v)
        elif isinstance(v, list):
            v = ", ".join(map(str, v[:5]))

        rows.append([pretty_key(k), v])

    return pd.DataFrame(rows, columns=["Field", "Value"])


# ------------------------------------------------------------
# 8. MAIN FUNCTION (NAME UNCHANGED)
# ------------------------------------------------------------
def fetch_info(symbol):
    try:
        info = yfinfo(symbol)
        if not info:
            return html_error(f"No information found for {symbol}")

        groups = build_grouped_info(info)

        final_html = ""

        # ---------------- PRICE / VOLUME ----------------
        price_data = groups["price_volume"]
        price_data = resolve_duplicates(price_data)

        price_subgroups = build_price_volume_subgroups(price_data)

        price_html = ""
        for title, data in price_subgroups.items():
            df = build_df_from_dict(data)
            if not df.empty:
                price_html += html_card(
                    title,
                    make_table(df, compact=True),
                    mini=True
                )

        if price_html:
            final_html += html_card("πŸ“ˆ Price / Volume", price_html)

        # ---------------- FUNDAMENTALS ----------------
        if groups["fundamental"]:
            df = build_df_from_dict(groups["fundamental"])
            final_html += html_card(
                "πŸ“Š Fundamentals",
                make_table(df, compact=True)
            )

        # ---------------- PROFILE ----------------
        if groups["profile"]:
            df = build_df_from_dict(groups["profile"])
            final_html += html_card(
                "🏒 Company Profile",
                make_table(df, compact=True)
            )

        # ---------------- LONG TEXT ----------------
        for k, v in groups["long_text"].items():
            final_html += html_card(
                pretty_key(k),
                f"<div class='long-text'>{v}</div>"
            )

        return final_html

    except Exception as e:
        return html_error(
            f"INFO ERROR: {e}<br><pre>{traceback.format_exc()}</pre>"
        )