File size: 16,058 Bytes
8e4c2f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4020107
8e4c2f7
7b50157
8e4c2f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import gradio as gr
import yfinance as yf
import plotly.graph_objs as go
import pandas as pd
import datetime
import pandas.api.types as ptypes

STYLE_BLOCK = """
<style>
.styled-table {
  border-collapse: collapse;
  margin: 10px 0;
  font-size: 0.9em;
  font-family: sans-serif;
  width: 100%;
  box-shadow: 0 0 10px rgba(0,0,0,0.1);
}
.styled-table th, .styled-table td {
  padding: 8px 10px;
  border: 1px solid #ddd;
}
.styled-table tbody tr:nth-child(even) {
  background-color: #f9f9f9;
}
.card {
  display: block; /* Ensures each card is on its own line */
  width: 95%;     /* Make card take up most of the width */
  margin: 10px auto; /* Center the cards and add margin */
  padding: 15px;
  border: 1px solid #ddd;
  border-radius: 8px;
  box-shadow: 0 2px 5px rgba(0,0,0,0.1);
  background: #fafafa;
}
.card-category-title {
  font-size: 1.1em; /* Slightly larger heading for category */
  color: #222;
  margin: 0 0 8px; /* Adjusted margin */
  border-bottom: 1px solid #eee; /* Add a separator */
  padding-bottom: 5px;
}
.card-content-grid {
  display: flex;
  flex-wrap: wrap; /* Allow items to wrap to the next line */
  gap: 15px; /* Space between individual key-value items */
}
.key-value-pair {
  flex: 1 1 calc(20% - 15px); /* For 3 items in a row, considering gap */
  box-sizing: border-box; /* Include padding and border in the width */
  min-width: 150px; /* Prevent items from becoming too narrow */
  background: #fff;
  padding: 10px;
  border: 1px solid #e0e0e0;
  border-radius: 5px;
  box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}
.key-value-pair h3 {
  font-size: 0.95em; /* Smaller heading for the key */
  color: #444;
  margin: 0 0 5px 0;
  border-bottom: none;
  padding-bottom: 0;
}
.key-value-pair p {
  font-size: 0.9em; /* Smaller paragraph for the value */
  color: #555;
  margin: 0;
  font-weight: bold; /* Make values stand out */
}
.big-box {
  width:95%;
  margin:20px auto;
  padding:20px;
  border:1px solid #ccc;
  border-radius:8px;
  background:#fff;
  box-shadow:0 2px 8px rgba(0,0,0,0.1);
  font-size:0.95em;
  line-height:1.4em;
  max-height:400px;
  overflow-y:auto;
}
</style>
"""

def format_large_number(num):
    if not isinstance(num, (int, float)):
        return num # Return as is if not a number

    sign = '-' if num < 0 else ''
    num = abs(float(num))

    if num >= 1_000_000_000_000: # Lakh Crore (10^12)
        return f"{sign}{num / 1_000_000_000_000:.2f} LCr"
    elif num >= 10_000_000: # Crore (10^7)
        return f"{sign}{num / 10_000_000:.2f} Cr"
    elif num >= 100_000: # Lakh (10^5)
        return f"{sign}{num / 100_000:.2f} Lac"
    else:
        return f"{sign}{num:,.0f}"

def format_timestamp_to_date(timestamp):
    if not isinstance(timestamp, (int, float)) or timestamp <= 0:
        return "N/A"
    try:
        return datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d')
    except ValueError:
        return "Invalid Date"

def fetch_data(symbol, req_type):
    yfsymbol=symbol+".NS"
    try:
        ticker = yf.Ticker(yfsymbol)

        content_html = ""

        # Info block as cards + big boxes
        if req_type.lower() == "info":
            info = ticker.info
            if not info:
                content_html = "<h1>No info available</h1>"
            else:
                info_categories = {
                    "Company Overview": [
                        "longName", "symbol", "exchange", "quoteType", "sector", "industry",
                        "fullTimeEmployees", "website", "address1", "city", "state", "zip", "country", "phone"
                    ],
                    "Valuation Metrics": [
                        "marketCap", "enterpriseValue", "trailingPE", "forwardPE", "pegRatio",
                        "priceToSalesTrailing12Months", "enterpriseToRevenue", "enterpriseToEbitda"
                    ],
                    "Key Financials": [
                        "fiftyTwoWeekHigh", "fiftyTwoWeekLow", "fiftyDayAverage", "twoHundredDayAverage",
                        "trailingAnnualDividendRate", "trailingAnnualDividendYield", "dividendRate", "dividendYield",
                        "exDividendDate", "lastSplitFactor", "lastSplitDate", "lastDividendValue", "payoutRatio",
                        "beta", "sharesOutstanding", "impliedSharesOutstanding"
                    ],
                    "Operational Details": [
                        "auditRisk", "boardRisk", "compensationRisk", "shareHolderRightsRisk", "overallRisk",
                        "governanceEpochDate", "compensationAsOfEpochDate"
                    ],
                    "Trading Information": [
                        "open", "previousClose", "dayLow", "dayHigh", "volume", "averageVolume", "averageVolume10days",
                        "fiftyTwoWeekChange", "SandP52WeekChange", "currency", "regularMarketDayLow",
                        "regularMarketDayHigh", "regularMarketOpen", "regularMarketPreviousClose",
                        "regularMarketPrice", "regularMarketVolume", "regularMarketChange", "regularMarketChangePercent"
                    ],
                    "Analyst & Target": [
                        "targetMeanPrice", "numberOfAnalystOpinions", "recommendationKey", "recommendationMean"
                    ]
                }

                long_summary = info.pop("longBusinessSummary", None)
                officers = info.pop("companyOfficers", None)

                categorized_html = ""
                for category_name, keys in info_categories.items():
                    category_key_value_html = "" # Collect key-value pairs for this category
                    for key in keys:
                        if key in info and info[key] is not None and info[key] != []:
                            value = info[key]

                            # Apply formatting based on key
                            if key in ["exDividendDate", "lastSplitDate", "governanceEpochDate", "compensationAsOfEpochDate"]:
                                value = format_timestamp_to_date(value)
                            elif key in ["marketCap", "enterpriseValue", "fullTimeEmployees", "volume", "averageVolume", "averageVolume10days", "sharesOutstanding", "impliedSharesOutstanding", "regularMarketVolume"]:
                                value = format_large_number(value)
                            elif isinstance(value, (int, float)):
                                if 'percent' in key.lower() or 'ratio' in key.lower() or 'yield' in key.lower() or 'beta' in key.lower() or 'payoutRatio' in key.lower():
                                    value = f"{value:.2%}" # Format percentages
                                elif 'price' in key.lower() or 'dividend' in key.lower() or 'average' in key.lower():
                                    value = f"{value:.2f}" # Format currency/prices
                                else:
                                    value = f"{value:,.0f}"

                            category_key_value_html += f"<div class='key-value-pair'><h3>{key.replace('_', ' ').title()}</h3><p>{value}</p></div>"

                    if category_key_value_html: # Only add category header and card if there is content in it
                        categorized_html += f"<h2>{category_name}</h2><div class='card'><div class='card-content-grid'>{category_key_value_html}</div></div>"

                extra_sections = ""
                if long_summary:
                    extra_sections += f"<div class='big-box'><h2>Business Summary</h2><p>{long_summary}</p></div>"
                if officers:
                    officer_rows = "".join(
                        f"<tr><td>{o.get('name','')}"f"</td><td>{o.get('title','')}"f"</td><td>{o.get('age','')}"f"</td></tr>"
                        for o in officers
                    )
                    officer_table = f"<table class='styled-table'><tr><th>Name</th><th>Title</th><th>Age</th></tr>{officer_rows}</table>"
                    extra_sections += f"<div class='big-box'><h2>Company Officers</h2>{officer_table}</div>"
                content_html = f"{categorized_html}{extra_sections}"

        # Daily chart
        elif req_type.lower() == "daily":
            df = yf.download(yfsymbol, period="1y", interval="1d").round(2)
            if df.empty:
                content_html = f"<h1>No daily data for {symbol}</h1>"
            else:
                if isinstance(df.columns, pd.MultiIndex):
                    df.columns = df.columns.get_level_values(0)

                low_price = df["Low"].min()
                high_price = df["High"].max()
                price_range = high_price - low_price
                vol_band_min = low_price - (price_range / 5)
                vol_band_max = low_price
                vol_max = df["Volume"].max()
                vol_scale = (vol_band_max - vol_band_min) / vol_max if vol_max > 0 else 1

                fig = go.Figure()
                fig.add_trace(go.Candlestick(
                    x=df.index, open=df["Open"], high=df["High"],
                    low=df["Low"], close=df["Close"], name="Price"
                ))
                fig.add_trace(go.Bar(
                    x=df.index,
                    y=df["Volume"] * vol_scale + vol_band_min,
                    name="Volume", marker_color="lightblue",
                    customdata=df["Volume"],
                    hovertemplate="Volume: %{customdata}<extra></extra>"
                ))
                fig.update_layout(
                    xaxis_title="Date", yaxis_title="Price",
                    yaxis=dict(range=[vol_band_min, high_price]),
                    xaxis_rangeslider_visible=False, height=600
                )
                chart_html = fig.to_html(full_html=False)
                table_html = df.tail(30).to_html(classes="styled-table", border=0)
                content_html = f"{chart_html}<h2>Recent Daily Data (last 30 rows)</h2>{table_html}"

        # Intraday chart
        elif req_type.lower() == "intraday":
            df = yf.download(yfsymbol, period="1d", interval="5m").round(2)
            if df.empty:
                content_html = f"<h1>No intraday data for {symbol}</h1>"
            else:
                if isinstance(df.columns, pd.MultiIndex):
                    df.columns = df.columns.get_level_values(0)

                low_price = df["Low"].min()
                high_price = df["High"].max()
                price_range = high_price - low_price
                vol_band_min = low_price - (price_range / 5)
                vol_band_max = low_price
                vol_max = df["Volume"].max()
                vol_scale = (vol_band_max - vol_band_min) / vol_max if vol_max > 0 else 1

                fig = go.Figure()
                fig.add_trace(go.Candlestick(
                    x=df.index, open=df["Open"], high=df["High"],
                    low=df["Low"], close=df["Close"], name="Price"
                ))
                fig.add_trace(go.Bar(
                    x=df.index,
                    y=df["Volume"] * vol_scale + vol_band_min,
                    name="Volume", marker_color="orange",
                    customdata=df["Volume"],
                    hovertemplate="Volume: %{customdata}<extra></extra>"
                ))
                fig.update_layout(
                    xaxis_title="Time", yaxis_title="Price",
                    yaxis=dict(range=[vol_band_min, high_price]),
                    xaxis_rangeslider_visible=False, height=600
                )
                chart_html = fig.to_html(full_html=False)
                table_html = df.tail(50).to_html(classes="styled-table", border=0)
                content_html = f"{chart_html}<h2>Recent Intraday Data (last 50 rows)</h2>{table_html}"

        # Financial sections
        elif req_type.lower() == "qresult":
            df = ticker.quarterly_financials
            if not df.empty:
                for col in df.columns:
                    if ptypes.is_numeric_dtype(df[col]):
                        df[col] = df[col].apply(format_large_number)
            content_html = f"<h2>Quarterly Results</h2>{df.to_html(classes='styled-table', border=0)}" if not df.empty else "<h1>No quarterly results available</h1>"

        elif req_type.lower() == "result":
            df = ticker.financials
            if not df.empty:
                for col in df.columns:
                    if ptypes.is_numeric_dtype(df[col]):
                        df[col] = df[col].apply(format_large_number)
            content_html = f"<h2>Annual Results</h2>{df.to_html(classes='styled-table', border=0)}" if not df.empty else "<h1>No annual results available</h1>"

        elif req_type.lower() == "balance":
            df = ticker.balance_sheet
            if not df.empty:
                for col in df.columns:
                    if ptypes.is_numeric_dtype(df[col]):
                        df[col] = df[col].apply(format_large_number)
            content_html = f"<h2>Balance Sheet</h2>{df.to_html(classes='styled-table', border=0)}" if not df.empty else "<h1>No balance sheet available</h1>"

        elif req_type.lower() == "cashflow":
            df = ticker.cashflow
            if not df.empty:
                for col in df.columns:
                    if ptypes.is_numeric_dtype(df[col]):
                        df[col] = df[col].apply(format_large_number)
            content_html = f"<h2>Cash Flow</h2>{df.to_html(classes='styled-table', border=0)}" if not df.empty else "<h1>No cashflow available</h1>"

        elif req_type.lower() == "dividend":
            df = ticker.dividends.to_frame('Dividend')
            if not df.empty:
                for col in df.columns:
                    if ptypes.is_numeric_dtype(df[col]):
                        df[col] = df[col].apply(format_large_number)
            content_html = f"<h2>Dividend History</h2>{df.to_html(classes='styled-table', border=0)}" if not df.empty else "<h1>No dividend history available</h1>"

        elif req_type.lower() == "split":
            df = ticker.splits.to_frame('Split')
            if not df.empty:
                for col in df.columns:
                    if ptypes.is_numeric_dtype(df[col]):
                        df[col] = df[col].apply(format_large_number)
            content_html = f"<h2>Split History</h2>{df.to_html(classes='styled-table', border=0)}" if not df.empty else "<h1>No split history available</h1>"

        elif req_type.lower() == "other": # This typically handles earnings
            df = ticker.earnings
            if not df.empty:
                for col in df.columns:
                    if ptypes.is_numeric_dtype(df[col]):
                        df[col] = df[col].apply(format_large_number)
            content_html = f"<h2>Earnings</h2>{df.to_html(classes='styled-table', border=0)}" if not df.empty else "<h1>No earnings data available</h1>"

        else:
            content_html = f"<h1>No handler for {req_type}</h1>"

    except Exception as e:
        content_html = f"<h1>Error</h1><p>{str(e)}</p>"

    # Wrap the content_html in a complete HTML document structure
    full_html_output = f"""
<!DOCTYPE html>
<html>
<head>
    <title>Stock Data for {symbol}</title>
    {STYLE_BLOCK}
</head>
<body>
    {content_html}
</body>
</html>
"""
    return full_html_output


iface = gr.Interface(
    fn=fetch_data,
    inputs=[
        gr.Textbox(label="Stock Symbol", value="PNB"),
        gr.Dropdown(
            label="Request Type",
            choices=[
                "info",
                "intraday",
                "daily",
                "qresult",
                "result",
                "balance",
                "cashflow",
                "dividend",
                "split",
                "other"
            ],
            value="info"
        )
    ],
    outputs=gr.HTML(label="Full HTML Output"),
    title="Stock Data API (Full)",
    description="Fetch data from NSE and yfinance",
    api_name="fetch_data"
)

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=7860)