File size: 7,533 Bytes
3a83327 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# ================================
# NSE Fetch Module (DF Only)
# ================================
import datetime
import pandas as pd
import time
import requests
import nsepython # Moved import here
HEADERS = {
"User-Agent": "Mozilla/5.0",
"Accept-Language": "en-US,en;q=0.9",
}
session = requests.Session()
session.get("https://www.nseindia.com", headers=HEADERS, timeout=5)
# ---------------------------------------------------
# Helper: JSON Fetch
# ---------------------------------------------------
def fetch_data(url):
try:
response = session.get(url, headers=HEADERS, timeout=5)
response.raise_for_status()
return response.json()
except:
return None
# ---------------------------------------------------
# Clean DF
# ---------------------------------------------------
def clean_dataframe(df):
df.columns = df.columns.str.strip()
str_cols = df.select_dtypes(include=["object"]).columns
df[str_cols] = df[str_cols].apply(lambda x: x.str.strip())
df.fillna(0.01, inplace=True)
return df
# ---------------------------------------------------
# Bhavcopy Fetch β DataFrame
# ---------------------------------------------------
def fetch_bhavcopy_df(date):
"""Returns Cleaned Bhavcopy DF for EQ / BE / SM"""
date_str = date.strftime("%d-%m-%Y")
print(f"Attempting to fetch bhavcopy for date: {date_str}")
try:
df = nsepython.get_bhavcopy(date_str) # Direct call
if df is None or df.empty:
print(f"No bhavcopy data or empty DataFrame returned for {date_str}")
return None, None
actual_bhavcopy_date = datetime.datetime.strptime(
df.iloc[2, 2].strip(), "%d-%b-%Y"
).date()
df = clean_dataframe(df)
df_filtered = df[df.iloc[:, 1].isin(["EQ", "BE", "SM"])]
return df_filtered, actual_bhavcopy_date
except Exception as e:
print(f"An error occurred while fetching bhavcopy for {date_str}: {e}")
return None, None
# ---------------------------------------------------
# Stock Deliverable DF (security-wise archive)
# ---------------------------------------------------
def fetch_stock_df(nse_module, stock, start, end, series="ALL"):
"""Return DF for security-wise archive (deliverable + all columns)"""
df = nse_module.security_wise_archive(start, end, stock, series)
if df is not None and not df.empty:
return df
return None
# ---------------------------------------------------
# All NSE Indices β DataFrames
# ---------------------------------------------------
def nse_indices_df():
url = "https://www.nseindia.com/api/allIndices"
data = fetch_data(url)
if data is None:
return None, None, None
df_dates = pd.DataFrame([data["dates"]])
df_meta = pd.DataFrame([{k: v for k, v in data.items() if k not in ["data", "dates"]}])
df_data = pd.DataFrame(data["data"])
return df_dates, df_meta, df_data
# ---------------------------------------------------
# Specific Index β DataFrames
# ---------------------------------------------------
def nse_index_df(index_name="NIFTY 50"):
url = f"https://www.nseindia.com/api/equity-stockIndices?index={index_name.replace(' ', '%20')}"
data = fetch_data(url)
if data is None:
return None, None, None, None
df_market = pd.DataFrame([data["marketStatus"]])
df_adv = pd.DataFrame([data["advance"]])
df_meta = pd.DataFrame([data["metadata"]])
df_data = pd.DataFrame(data["data"])
return df_market, df_adv, df_meta, df_data
# ---------------------------------------------------
# Option Chain DF (Raw CE/PE)
# ---------------------------------------------------
def fetch_option_chain_df(symbol="NIFTY"):
url = f"https://www.nseindia.com/api/option-chain-indices?symbol={symbol}"
data = fetch_data(url)
if data and "filtered" in data:
ce_df = pd.DataFrame([r["CE"] for r in data["filtered"]["data"] if "CE" in r])
pe_df = pd.DataFrame([r["PE"] for r in data["filtered"]["data"] if "PE" in r])
return ce_df, pe_df
return None, None
# ---------------------------------------------------
# Pre-open market β DataFrame
# ---------------------------------------------------
def nse_preopen_df(key="NIFTY"):
url = f"https://www.nseindia.com/api/market-data-pre-open?key={key}"
data = fetch_data(url)
if data:
return pd.DataFrame(data.get("data", []))
return None
# ---------------------------------------------------
# FNO Quote β DataFrames
# ---------------------------------------------------
def nse_fno_df(symbol):
payload = nsepython.nse_quote(symbol) # Direct call
if not payload:
return None
# info + timestamps + volatility info
info_keys = list(payload["info"].keys()) + [
"fut_timestamp",
"opt_timestamp",
"maxVolatility",
"minVolatility",
"avgVolatility",
]
info_values = list(payload["info"].values()) + [
payload["fut_timestamp"],
payload["opt_timestamp"],
payload["underlyingInfo"]["volatility"][0]['maxVolatility'],
payload["underlyingInfo"]["volatility"][0]['minVolatility'],
payload["underlyingInfo"]["volatility"][0]['avgVolatility'],
]
df_info = pd.DataFrame([info_values], columns=info_keys)
df_mcap = pd.DataFrame(payload["underlyingInfo"].get("marketCap", {}))
df_fno_list = pd.DataFrame(payload.get("allSymbol", []), columns=["FNO_Symbol"])
# Core stock depth
df_stock = process_stocks_df(payload["stocks"])
return {
"info": df_info,
"mcap": df_mcap,
"fno": df_fno_list,
"stock": df_stock
}
# ---------------------------------------------------
# Handle nested stock β DF
# ---------------------------------------------------
def process_stocks_df(data):
"""Return final merged stock DF only"""
trade_info_list, other_info_list = [], []
bid_ask_list = []
stock_values = []
trade_keys = other_keys = bidask_keys = stock_keys = None
for i, stock in enumerate(data):
meta = stock.pop("metadata")
depth = stock.pop("marketDeptOrderBook")
parent = stock
trade_info = depth.pop("tradeInfo", {})
other_info = depth.pop("otherInfo", {})
trade_info_list.append(trade_info)
other_info_list.append(other_info)
# bid / ask
bid_ask_row = {}
for side in ["bid", "ask"]:
for j, entry in enumerate(depth.get(side, []), start=1):
bid_ask_row[f"{side}_price_{j}"] = entry.get("price")
bid_ask_row[f"{side}_qty_{j}"] = entry.get("quantity")
bid_ask_list.append(bid_ask_row)
if i == 0:
trade_keys = list(trade_info.keys())
other_keys = list(other_info.keys())
bidask_keys = list(bid_ask_row.keys())
stock_keys = list(meta.keys()) + list(depth.keys()) + list(parent.keys())
stock_values.append(
list(meta.values()) + list(depth.values()) + list(parent.values())
)
df_trade = pd.DataFrame(trade_info_list, columns=trade_keys)
df_other = pd.DataFrame(other_info_list, columns=other_keys)
df_bidask = pd.DataFrame(bid_ask_list, columns=bidask_keys)
df_stock = pd.DataFrame(stock_values, columns=stock_keys)
df_stock = df_stock.drop(columns=['bid', 'ask', 'carryOfCost'], errors="ignore")
return pd.concat([df_stock, df_trade, df_other, df_bidask], axis=1) |