File size: 10,749 Bytes
a106796 e13df2b a106796 beb787e 31b0f5f beb787e efa78ba 4383da9 beb787e a106796 31b0f5f a106796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os, sys, requests, pandas as pd, json, random, datetime, time, logging, re, urllib.parse
from collections import Counter
mode = 'local'
# ------------------------- NSE FETCH -------------------------
if mode == "vpn":
def nsefetch(payload):
def encode(url): return url if "%26" in url or "%20" in url else urllib.parse.quote(url, safe=":/?&=")
def refresh_cookies():
os.popen(f'curl -c cookies.txt "https://www.nseindia.com" {curl_headers}').read()
os.popen(f'curl -b cookies.txt -c cookies.txt "https://www.nseindia.com/option-chain" {curl_headers}').read()
if not os.path.exists("cookies.txt"): refresh_cookies()
encoded = encode(payload)
cmd = f'curl -b cookies.txt "{encoded}" {curl_headers}'
raw = os.popen(cmd).read()
try: return json.loads(raw)
except:
refresh_cookies()
raw = os.popen(cmd).read()
try: return json.loads(raw)
except: return {}
if mode == 'local':
def nsefetch(payload):
try:
s = requests.Session()
s.get("https://www.nseindia.com", headers=headers, timeout=10)
s.get("https://www.nseindia.com/option-chain", headers=headers, timeout=10)
return s.get(payload, headers=headers, timeout=10).json()
except:
return {}
# ------------------------- HEADERS -------------------------
headers = {
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
"accept-language": "en-US,en;q=0.9,en-IN;q=0.8,en-GB;q=0.7",
"cache-control": "max-age=0",
"priority": "u=0, i",
"sec-ch-ua": '"Microsoft Edge";v="129","Not=A?Brand";v="8","Chromium";v="129"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "document",
"sec-fetch-mode": "navigate",
"sec-fetch-site": "none",
"sec-fetch-user": "?1",
"upgrade-insecure-requests": "1",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36 Edg/129.0.0.0"
}
niftyindices_headers = {
'Connection': 'keep-alive',
'sec-ch-ua': '"Not;A Brand";v="99","Google Chrome";v="91","Chromium";v="91"',
'Accept': 'application/json,text/javascript,*/*;q=0.01',
'DNT': '1',
'X-Requested-With': 'XMLHttpRequest',
'sec-ch-ua-mobile': '?0',
'User-Agent': 'Mozilla/5.0',
'Content-Type': 'application/json; charset=UTF-8',
'Origin': 'https://niftyindices.com',
'Sec-Fetch-Site': 'same-origin',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Dest': 'empty',
'Referer': 'https://niftyindices.com/reports/historical-data',
'Accept-Language': 'en-US,en;q=0.9,hi;q=0.8'
}
curl_headers = ''' -H "authority: beta.nseindia.com" -H "cache-control: max-age=0" -H "dnt: 1" -H "upgrade-insecure-requests: 1" -H "user-agent: Mozilla/5.0" -H "sec-fetch-user: ?1" -H "accept: */*" -H "sec-fetch-site: none" -H "accept-language: en-US,en;q=0.9" --compressed'''
run_time = datetime.datetime.now()
indices = ['NIFTY','FINNIFTY','BANKNIFTY']
# ------------------------- HELPERS -------------------------
def nsesymbolpurify(s): return s.replace('&','%26')
def flatten_dict(d, parent="", sep="."):
items={}
for k,v in d.items():
nk = f"{parent}{sep}{k}" if parent else k
if isinstance(v, dict): items.update(flatten_dict(v, nk, sep))
else: items[nk] = v
return items
def flatten_nested(d, prefix=""):
flat={}
for k,v in d.items():
nk = f"{prefix}{k}" if prefix=="" else f"{prefix}.{k}"
if isinstance(v, dict):
flat.update(flatten_nested(v, nk))
elif isinstance(v, list):
if v and isinstance(v[0], dict):
for i,x in enumerate(v): flat.update(flatten_nested(x, f"{nk}.{i}"))
else: flat[nk]=v
else: flat[nk]=v
return flat
def rename_col(cols):
child=[c.split('.')[-1] for c in cols]
cnt=Counter(child)
new=[]
for c,ch in zip(cols,child):
if cnt[ch]==1: new.append(ch)
else:
p=c.split('.')
new.append(f"{p[-1]}_{p[-2]}" if len(p)>=2 else p[-1])
return new
def df_from_data(data):
rows=[ flatten_nested(x) if isinstance(x,dict) else {"value":x} for x in data ]
df=pd.DataFrame(rows)
df.columns=rename_col(df.columns)
return df
# ------------------------- API FUNCTIONS -------------------------
def indices():
p=nsefetch("https://www.nseindia.com/api/allIndices")
return {"data":pd.DataFrame(p.pop("data")), "dates":pd.DataFrame([p.pop("dates")]), "indices":pd.DataFrame([p])}
def eq(symbol):
symbol=nsesymbolpurify(symbol)
df=nsefetch(f'https://www.nseindia.com/api/quote-equity?symbol={symbol}')
pre=df.pop('preOpenMarket')
out={
"securityInfo": pd.DataFrame([df["securityInfo"]]),
"priceInfo": pd.DataFrame([flatten_dict(df["priceInfo"])]),
"industryInfo": pd.DataFrame([df["industryInfo"]]),
"pdSectorIndAll": pd.DataFrame([df["metadata"].pop("pdSectorIndAll")]),
"metadata": pd.DataFrame([df["metadata"]]),
"info": pd.DataFrame([df["info"]]),
"preOpen": pd.DataFrame(pre.pop('preopen')),
"preOpenMarket": pd.DataFrame([pre])
}
return out
def eq_fno(): return nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O')
def eq_der(symbol): return nsefetch('https://www.nseindia.com/api/quote-derivative?symbol='+nsesymbolpurify(symbol))
def index_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-indices?symbol='+nsesymbolpurify(symbol))
def eq_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-equities?symbol='+nsesymbolpurify(symbol))
def nse_holidays(t="trading"): return nsefetch('https://www.nseindia.com/api/holiday-master?type='+t)
def nse_results(index="equities",period="Quarterly"):
if index in ["equities","debt","sme"] and period in ["Quarterly","Annual","Half-Yearly","Others"]:
return pd.json_normalize(nsefetch(f'https://www.nseindia.com/api/corporates-financial-results?index={index}&period={period}'))
print("Invalid Input")
def nse_events(): return pd.json_normalize(nsefetch('https://www.nseindia.com/api/event-calendar'))
def nse_past_results(symbol): return nsefetch('https://www.nseindia.com/api/results-comparision?symbol='+nsesymbolpurify(symbol))
def nse_blockdeal(): return nsefetch('https://nseindia.com/api/block-deal')
def nse_marketStatus(): return nsefetch('https://nseindia.com/api/marketStatus')
def nse_circular(mode="latest"):
return nsefetch('https://www.nseindia.com/api/latest-circular' if mode=="latest" else 'https://www.nseindia.com/api/circulars')
def nse_fiidii(mode="pandas"):
p=nsefetch('https://www.nseindia.com/api/fiidiiTradeReact')
return pd.DataFrame(p)
def nsetools_get_quote(symbol):
p=nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O')
for x in p['data']:
if x['symbol']==symbol.upper(): return x
def nse_index():
p=nsefetch('https://iislliveblob.niftyindices.com/jsonfiles/LiveIndicesWatch.json')
return pd.DataFrame(p['data'])
def index_history(sym,sd,ed):
d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getHistoricaldatatabletoString', headers=niftyindices_headers, json=d).json()["d"])
return pd.DataFrame.from_records(p)
def index_pe_pb_div(sym,sd,ed):
d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getpepbHistoricaldataDBtoString', headers=niftyindices_headers, json=d).json()["d"])
return pd.DataFrame.from_records(p)
def index_total_returns(sym,sd,ed):
d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getTotalReturnIndexString', headers=niftyindices_headers, json=d).json()["d"])
return pd.DataFrame.from_records(p)
def nse_bulkdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/bulk.csv")
def nse_blockdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/block.csv")
#nse daily report
def nse_bhavcopy(d): return pd.read_csv("https://archives.nseindia.com/products/content/sec_bhavdata_full_"+d.replace("-","")+".csv")
def nse_highlow(d: str) -> pd.DataFrame:
"""
NSE 52-week High/Low CSV
Real header starts from row 3
"""
date_str = d.replace("-", "")
url = f"https://archives.nseindia.com/content/CM_52_wk_High_low_{date_str}.csv"
df = pd.read_csv(
url,
skiprows=2, # 🔥 key fix
engine="python"
)
df.columns = df.columns.str.strip()
return df
def nse_preopen(key="NIFTY"):
p=nsefetch("https://www.nseindia.com/api/market-data-pre-open?key="+key)
return {"data":df_from_data(p.pop("data")), "rem":df_from_data([p])}
def nse_most_active(t="securities",s="value"):
return pd.DataFrame(nsefetch(f"https://www.nseindia.com/api/live-analysis-most-active-{t}?index={s}")["data"])
def nse_eq_symbols():
return pd.read_csv('https://archives.nseindia.com/content/equities/EQUITY_L.csv')['SYMBOL'].tolist()
def nse_price_band_hitters(b="both",v="AllSec"):
p=nsefetch("https://www.nseindia.com/api/live-analysis-price-band-hitter")
return {"data":pd.DataFrame(p[b][v]["data"]), "count":pd.DataFrame([p['count']])}
def nse_largedeals(mode="bulk_deals"):
p=nsefetch('https://www.nseindia.com/api/snapshot-capital-market-largedeal')
return pd.DataFrame(p["BULK_DEALS_DATA" if mode=="bulk_deals" else "SHORT_DEALS_DATA" if mode=="short_deals" else "BLOCK_DEALS_DATA"])
def nse_largedeals_historical(f,t,mode="bulk_deals"):
m = "bulk-deals" if mode=="bulk_deals" else "short-selling" if mode=="short_deals" else "block-deals"
p=nsefetch(f'https://www.nseindia.com/api/historical/{m}?from={f}&to={t}')
return pd.DataFrame(p["data"])
def nse_stock_hist(f,t,symbol,series="ALL"):
url=f"https://www.nseindia.com/api/historical/securityArchives?from={f}&to={t}&symbol={symbol.upper()}&dataType=priceVolumeDeliverable&series={series}"
return pd.DataFrame(nsefetch(url)['data'])
def nse_index_live(name="NIFTY 50"):
p=nsefetch(f"https://www.nseindia.com/api/equity-stockIndices?index={name.replace(' ','%20')}")
return {"data":df_from_data(p.pop("data")) if "data" in p else pd.DataFrame(), "rem":df_from_data([p])}
|