File size: 10,749 Bytes
a106796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13df2b
 
 
a106796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb787e
31b0f5f
 
beb787e
 
efa78ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4383da9
beb787e
 
 
a106796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31b0f5f
a106796
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os, sys, requests, pandas as pd, json, random, datetime, time, logging, re, urllib.parse
from collections import Counter

mode = 'local'

# ------------------------- NSE FETCH -------------------------
if mode == "vpn":
    def nsefetch(payload):
        def encode(url): return url if "%26" in url or "%20" in url else urllib.parse.quote(url, safe=":/?&=")
        def refresh_cookies():
            os.popen(f'curl -c cookies.txt "https://www.nseindia.com" {curl_headers}').read()
            os.popen(f'curl -b cookies.txt -c cookies.txt "https://www.nseindia.com/option-chain" {curl_headers}').read()

        if not os.path.exists("cookies.txt"): refresh_cookies()
        encoded = encode(payload)
        cmd = f'curl -b cookies.txt "{encoded}" {curl_headers}'
        raw = os.popen(cmd).read()
        try: return json.loads(raw)
        except:
            refresh_cookies()
            raw = os.popen(cmd).read()
            try: return json.loads(raw)
            except: return {}

if mode == 'local':
    def nsefetch(payload):
        try:
            s = requests.Session()
            s.get("https://www.nseindia.com", headers=headers, timeout=10)
            s.get("https://www.nseindia.com/option-chain", headers=headers, timeout=10)
            return s.get(payload, headers=headers, timeout=10).json()
        except:
            return {}

# ------------------------- HEADERS -------------------------
headers = {
    "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
    "accept-language": "en-US,en;q=0.9,en-IN;q=0.8,en-GB;q=0.7",
    "cache-control": "max-age=0",
    "priority": "u=0, i",
    "sec-ch-ua": '"Microsoft Edge";v="129","Not=A?Brand";v="8","Chromium";v="129"',
    "sec-ch-ua-mobile": "?0",
    "sec-ch-ua-platform": '"Windows"',
    "sec-fetch-dest": "document",
    "sec-fetch-mode": "navigate",
    "sec-fetch-site": "none",
    "sec-fetch-user": "?1",
    "upgrade-insecure-requests": "1",
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36 Edg/129.0.0.0"
}

niftyindices_headers = {
    'Connection': 'keep-alive',
    'sec-ch-ua': '"Not;A Brand";v="99","Google Chrome";v="91","Chromium";v="91"',
    'Accept': 'application/json,text/javascript,*/*;q=0.01',
    'DNT': '1',
    'X-Requested-With': 'XMLHttpRequest',
    'sec-ch-ua-mobile': '?0',
    'User-Agent': 'Mozilla/5.0',
    'Content-Type': 'application/json; charset=UTF-8',
    'Origin': 'https://niftyindices.com',
    'Sec-Fetch-Site': 'same-origin',
    'Sec-Fetch-Mode': 'cors',
    'Sec-Fetch-Dest': 'empty',
    'Referer': 'https://niftyindices.com/reports/historical-data',
    'Accept-Language': 'en-US,en;q=0.9,hi;q=0.8'
}

curl_headers = ''' -H "authority: beta.nseindia.com" -H "cache-control: max-age=0" -H "dnt: 1" -H "upgrade-insecure-requests: 1" -H "user-agent: Mozilla/5.0" -H "sec-fetch-user: ?1" -H "accept: */*" -H "sec-fetch-site: none" -H "accept-language: en-US,en;q=0.9" --compressed'''

run_time = datetime.datetime.now()
indices = ['NIFTY','FINNIFTY','BANKNIFTY']

# ------------------------- HELPERS -------------------------
def nsesymbolpurify(s): return s.replace('&','%26')

def flatten_dict(d, parent="", sep="."):
    items={}
    for k,v in d.items():
        nk = f"{parent}{sep}{k}" if parent else k
        if isinstance(v, dict): items.update(flatten_dict(v, nk, sep))
        else: items[nk] = v
    return items

def flatten_nested(d, prefix=""):
    flat={}
    for k,v in d.items():
        nk = f"{prefix}{k}" if prefix=="" else f"{prefix}.{k}"
        if isinstance(v, dict):
            flat.update(flatten_nested(v, nk))
        elif isinstance(v, list):
            if v and isinstance(v[0], dict):
                for i,x in enumerate(v): flat.update(flatten_nested(x, f"{nk}.{i}"))
            else: flat[nk]=v
        else: flat[nk]=v
    return flat

def rename_col(cols):
    child=[c.split('.')[-1] for c in cols]
    cnt=Counter(child)
    new=[]
    for c,ch in zip(cols,child):
        if cnt[ch]==1: new.append(ch)
        else:
            p=c.split('.')
            new.append(f"{p[-1]}_{p[-2]}" if len(p)>=2 else p[-1])
    return new

def df_from_data(data):
    rows=[ flatten_nested(x) if isinstance(x,dict) else {"value":x} for x in data ]
    df=pd.DataFrame(rows)
    df.columns=rename_col(df.columns)
    return df

# ------------------------- API FUNCTIONS -------------------------
def indices():
    p=nsefetch("https://www.nseindia.com/api/allIndices")
    return {"data":pd.DataFrame(p.pop("data")), "dates":pd.DataFrame([p.pop("dates")]), "indices":pd.DataFrame([p])}

def eq(symbol):
    symbol=nsesymbolpurify(symbol)
    df=nsefetch(f'https://www.nseindia.com/api/quote-equity?symbol={symbol}')
    pre=df.pop('preOpenMarket')
    out={
        "securityInfo": pd.DataFrame([df["securityInfo"]]),
        "priceInfo": pd.DataFrame([flatten_dict(df["priceInfo"])]),
        "industryInfo": pd.DataFrame([df["industryInfo"]]),
        "pdSectorIndAll": pd.DataFrame([df["metadata"].pop("pdSectorIndAll")]),
        "metadata": pd.DataFrame([df["metadata"]]),
        "info": pd.DataFrame([df["info"]]),
        "preOpen": pd.DataFrame(pre.pop('preopen')),
        "preOpenMarket": pd.DataFrame([pre])
    }
    return out

def eq_fno(): return nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O')
def eq_der(symbol): return nsefetch('https://www.nseindia.com/api/quote-derivative?symbol='+nsesymbolpurify(symbol))
def index_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-indices?symbol='+nsesymbolpurify(symbol))
def eq_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-equities?symbol='+nsesymbolpurify(symbol))
def nse_holidays(t="trading"): return nsefetch('https://www.nseindia.com/api/holiday-master?type='+t)

def nse_results(index="equities",period="Quarterly"):
    if index in ["equities","debt","sme"] and period in ["Quarterly","Annual","Half-Yearly","Others"]:
        return pd.json_normalize(nsefetch(f'https://www.nseindia.com/api/corporates-financial-results?index={index}&period={period}'))
    print("Invalid Input")

def nse_events(): return pd.json_normalize(nsefetch('https://www.nseindia.com/api/event-calendar'))
def nse_past_results(symbol): return nsefetch('https://www.nseindia.com/api/results-comparision?symbol='+nsesymbolpurify(symbol))
def nse_blockdeal(): return nsefetch('https://nseindia.com/api/block-deal')
def nse_marketStatus(): return nsefetch('https://nseindia.com/api/marketStatus')
def nse_circular(mode="latest"):
    return nsefetch('https://www.nseindia.com/api/latest-circular' if mode=="latest" else 'https://www.nseindia.com/api/circulars')

def nse_fiidii(mode="pandas"):
    
    p=nsefetch('https://www.nseindia.com/api/fiidiiTradeReact')
    return pd.DataFrame(p)

def nsetools_get_quote(symbol):
    p=nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O')
    for x in p['data']:
        if x['symbol']==symbol.upper(): return x

def nse_index():
    p=nsefetch('https://iislliveblob.niftyindices.com/jsonfiles/LiveIndicesWatch.json')
    return pd.DataFrame(p['data'])

def index_history(sym,sd,ed):
    d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
    p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getHistoricaldatatabletoString', headers=niftyindices_headers, json=d).json()["d"])
    return pd.DataFrame.from_records(p)

def index_pe_pb_div(sym,sd,ed):
    d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
    p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getpepbHistoricaldataDBtoString', headers=niftyindices_headers, json=d).json()["d"])
    return pd.DataFrame.from_records(p)

def index_total_returns(sym,sd,ed):
    d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
    p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getTotalReturnIndexString', headers=niftyindices_headers, json=d).json()["d"])
    return pd.DataFrame.from_records(p)


def nse_bulkdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/bulk.csv")
def nse_blockdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/block.csv")
#nse daily report
def nse_bhavcopy(d): return pd.read_csv("https://archives.nseindia.com/products/content/sec_bhavdata_full_"+d.replace("-","")+".csv")

def nse_highlow(d: str) -> pd.DataFrame:
    """
    NSE 52-week High/Low CSV
    Real header starts from row 3
    """
    date_str = d.replace("-", "")
    url = f"https://archives.nseindia.com/content/CM_52_wk_High_low_{date_str}.csv"

    df = pd.read_csv(
        url,
        skiprows=2,     # 🔥 key fix
        engine="python"
    )

    df.columns = df.columns.str.strip()
    return df




def nse_preopen(key="NIFTY"):
    p=nsefetch("https://www.nseindia.com/api/market-data-pre-open?key="+key)
    return {"data":df_from_data(p.pop("data")), "rem":df_from_data([p])}

def nse_most_active(t="securities",s="value"):
    return pd.DataFrame(nsefetch(f"https://www.nseindia.com/api/live-analysis-most-active-{t}?index={s}")["data"])

def nse_eq_symbols():
    return pd.read_csv('https://archives.nseindia.com/content/equities/EQUITY_L.csv')['SYMBOL'].tolist()

def nse_price_band_hitters(b="both",v="AllSec"):
    p=nsefetch("https://www.nseindia.com/api/live-analysis-price-band-hitter")
    return {"data":pd.DataFrame(p[b][v]["data"]), "count":pd.DataFrame([p['count']])}

def nse_largedeals(mode="bulk_deals"):
    p=nsefetch('https://www.nseindia.com/api/snapshot-capital-market-largedeal')
    return pd.DataFrame(p["BULK_DEALS_DATA" if mode=="bulk_deals" else "SHORT_DEALS_DATA" if mode=="short_deals" else "BLOCK_DEALS_DATA"])

def nse_largedeals_historical(f,t,mode="bulk_deals"):
    m = "bulk-deals" if mode=="bulk_deals" else "short-selling" if mode=="short_deals" else "block-deals"
    p=nsefetch(f'https://www.nseindia.com/api/historical/{m}?from={f}&to={t}')
    return pd.DataFrame(p["data"])

def nse_stock_hist(f,t,symbol,series="ALL"):
    url=f"https://www.nseindia.com/api/historical/securityArchives?from={f}&to={t}&symbol={symbol.upper()}&dataType=priceVolumeDeliverable&series={series}"
    return pd.DataFrame(nsefetch(url)['data'])

def nse_index_live(name="NIFTY 50"):
    p=nsefetch(f"https://www.nseindia.com/api/equity-stockIndices?index={name.replace(' ','%20')}")
    return {"data":df_from_data(p.pop("data")) if "data" in p else pd.DataFrame(), "rem":df_from_data([p])}