File size: 5,939 Bytes
03ea2b0
 
45990c5
03ea2b0
 
 
5f24324
03ea2b0
 
 
 
 
 
45990c5
 
5f24324
45990c5
 
 
 
 
 
5f24324
03ea2b0
 
 
5f24324
03ea2b0
 
 
 
 
 
 
 
 
5f24324
03ea2b0
 
 
 
 
5f24324
03ea2b0
 
 
 
 
 
 
 
 
5f24324
03ea2b0
 
 
45990c5
 
03ea2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
5f24324
03ea2b0
 
dbc6521
fecb02e
dbc6521
 
03ea2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f24324
 
 
 
 
03ea2b0
 
 
 
5f24324
 
 
 
 
 
03ea2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbc6521
03ea2b0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from nsepython import *
import pandas as pd
import re

def build_preopen_html(key="NIFTY"):
    # Fetch pre-open data
    p = nsefetch(f"https://www.nseindia.com/api/market-data-pre-open?key={key}")
    data_df = df_from_data(p.pop("data"))
    rem_df  = df_from_data([p])
    
    main_df = data_df.iloc[[0]] if not data_df.empty else pd.DataFrame()
    const_df = data_df.iloc[1:] if len(data_df) > 1 else pd.DataFrame()
    
    # ================= REMOVE *_x AND SPECIFIC PATTERNS =================
    pattern_remove = re.compile(r"^(price_|buyQty_|sellQty_|iep_)\d+$")
    
    def remove_pattern_cols(df):
        return df[[c for c in df.columns if not pattern_remove.match(c)]]
    
    main_df = remove_pattern_cols(main_df)
    const_df = remove_pattern_cols(const_df)
    rem_df = remove_pattern_cols(rem_df)

    # ================= HELPER FUNCTION =================
    def df_to_html_color(df, metric_col=None):
        df_html = df.copy()
        top3_up, top3_down = [], []
        if metric_col and metric_col in df_html.columns and pd.api.types.is_numeric_dtype(df_html[metric_col]):
            col_numeric = df_html[metric_col].dropna()
            top3_up = col_numeric.nlargest(3).index.tolist()
            top3_down = col_numeric.nsmallest(3).index.tolist()

        for idx, row in df_html.iterrows():
            for col in df_html.columns:
                val = row[col]
                style = ""
                if isinstance(val, (int, float)):
                    val_fmt = f"{val:.2f}"
                    if val > 0:
                        style = "numeric-positive"
                    elif val < 0:
                        style = "numeric-negative"
                    if metric_col == col:
                        if idx in top3_up:
                            style += " top-up"
                        elif idx in top3_down:
                            style += " top-down"
                    df_html.at[idx, col] = f'<span class="{style.strip()}">{val_fmt}</span>'
                else:
                    df_html.at[idx, col] = str(val)
        return df_html.to_html(index=False, escape=False, classes="compact-table")

    # ================= MINI-CARDS =================
    def merge_info_main_cards(rem_df, main_df):
        combined = pd.concat([rem_df, main_df], axis=1)
        combined = combined.loc[:, ~combined.columns.duplicated()]
        # Remove pattern columns
        combined = combined[[c for c in combined.columns if not pattern_remove.match(c)]]
        cards_html = '<div class="mini-card-container">'
        for col in combined.columns:
            val = combined.at[0, col] if not combined.empty else ""
            cards_html += f'''
            <div class="mini-card">
                <div class="card-key">{col}</div>
                <div class="card-val">{val}</div>
            </div>
            '''
        cards_html += '</div>'
        return cards_html

    info_cards_html = merge_info_main_cards(rem_df, main_df)

    # ================= Constituents table =================
    cons_html = df_to_html_color(const_df) if not const_df.empty else "<i>No pre-open constituents</i>"

    # ================= Metric tables (restricted to selected columns) =================
    metric_cols_allowed = ["pChange", "totalTurnover", "marketCap", "totalTradedVolume"]
    metric_cols = [c for c in metric_cols_allowed if c in const_df.columns and pd.api.types.is_numeric_dtype(const_df[c])] if not const_df.empty else []

    metric_tables = ""
    for col in metric_cols:
        df_const = const_df.copy()
        df_const[col] = pd.to_numeric(df_const[col], errors="ignore")
        df_const = df_const.sort_values(col, ascending=False)
        df_html = df_to_html_color(df_const[['symbol', col]] if 'symbol' in df_const.columns else df_const[[col]], metric_col=col)
        metric_tables += f"""
        <div class="small-table">
            <div class="st-title">{col}</div>
            <div class="st-body">{df_html}</div>
        </div>
        """

    # ================= FINAL HTML =================
    html = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
body {{ font-family: Arial; margin: 12px; background: #f5f5f5; color: #222; font-size: 14px; }}
h2, h3 {{ margin: 12px 0 6px 0; font-weight: 600; }}
table {{ border-collapse: collapse; width: 100%; table-layout: auto; }}
th, td {{ border: 1px solid #bbb; padding: 5px 8px; text-align: left; font-size: 13px; }}
th {{ background: #333; color: white; font-weight: 600; }}
.compact-table td.numeric-positive {{ color: green; font-weight: bold; }}
.compact-table td.numeric-negative {{ color: red; font-weight: bold; }}
.compact-table td.top-up {{ background: #a8f0a5; }}
.compact-table td.top-down {{ background: #f0a8a8; }}
.small-table {{ background: white; border-radius: 6px; padding: 8px; box-shadow: 0px 1px 4px rgba(0,0,0,0.15); border: 1px solid #ddd; overflow-y: auto; }}
.st-title {{ font-size: 14px; text-align: center; margin-bottom: 6px; font-weight: bold; background: #222; color: white; padding: 5px 0; border-radius: 4px; }}
.st-body {{ max-height: 300px; overflow-y: auto; font-size: 12px; }}
.grid {{ display: grid; grid-template-columns: repeat(5, 1fr); gap: 12px; margin-top: 12px; }}
.mini-card-container {{ display: flex; flex-wrap: wrap; gap: 10px; }}
.mini-card {{ background: #fff; padding: 8px 10px; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12); min-width: 120px; font-size: 13px; }}
.card-key {{ font-weight: bold; color: #333; margin-bottom: 2px; }}
.card-val {{ color: #222; }}
</style>
</head>
<body>

<h2>Pre-Open Data: {key}</h2>

<div class="compact-section">
    <h3>Info + Main Data</h3>
    {info_cards_html}
</div>

<div class="compact-section">
    <h3>Pre-Open Constituents</h3>
    {cons_html}
</div>

<h3>Metric Tables (selected numeric)</h3>
<div class="grid">
    {metric_tables}
</div>

</body>
</html>
"""
    return html