File size: 5,939 Bytes
03ea2b0 45990c5 03ea2b0 5f24324 03ea2b0 45990c5 5f24324 45990c5 5f24324 03ea2b0 5f24324 03ea2b0 5f24324 03ea2b0 5f24324 03ea2b0 5f24324 03ea2b0 45990c5 03ea2b0 5f24324 03ea2b0 dbc6521 fecb02e dbc6521 03ea2b0 5f24324 03ea2b0 5f24324 03ea2b0 dbc6521 03ea2b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
from nsepython import *
import pandas as pd
import re
def build_preopen_html(key="NIFTY"):
# Fetch pre-open data
p = nsefetch(f"https://www.nseindia.com/api/market-data-pre-open?key={key}")
data_df = df_from_data(p.pop("data"))
rem_df = df_from_data([p])
main_df = data_df.iloc[[0]] if not data_df.empty else pd.DataFrame()
const_df = data_df.iloc[1:] if len(data_df) > 1 else pd.DataFrame()
# ================= REMOVE *_x AND SPECIFIC PATTERNS =================
pattern_remove = re.compile(r"^(price_|buyQty_|sellQty_|iep_)\d+$")
def remove_pattern_cols(df):
return df[[c for c in df.columns if not pattern_remove.match(c)]]
main_df = remove_pattern_cols(main_df)
const_df = remove_pattern_cols(const_df)
rem_df = remove_pattern_cols(rem_df)
# ================= HELPER FUNCTION =================
def df_to_html_color(df, metric_col=None):
df_html = df.copy()
top3_up, top3_down = [], []
if metric_col and metric_col in df_html.columns and pd.api.types.is_numeric_dtype(df_html[metric_col]):
col_numeric = df_html[metric_col].dropna()
top3_up = col_numeric.nlargest(3).index.tolist()
top3_down = col_numeric.nsmallest(3).index.tolist()
for idx, row in df_html.iterrows():
for col in df_html.columns:
val = row[col]
style = ""
if isinstance(val, (int, float)):
val_fmt = f"{val:.2f}"
if val > 0:
style = "numeric-positive"
elif val < 0:
style = "numeric-negative"
if metric_col == col:
if idx in top3_up:
style += " top-up"
elif idx in top3_down:
style += " top-down"
df_html.at[idx, col] = f'<span class="{style.strip()}">{val_fmt}</span>'
else:
df_html.at[idx, col] = str(val)
return df_html.to_html(index=False, escape=False, classes="compact-table")
# ================= MINI-CARDS =================
def merge_info_main_cards(rem_df, main_df):
combined = pd.concat([rem_df, main_df], axis=1)
combined = combined.loc[:, ~combined.columns.duplicated()]
# Remove pattern columns
combined = combined[[c for c in combined.columns if not pattern_remove.match(c)]]
cards_html = '<div class="mini-card-container">'
for col in combined.columns:
val = combined.at[0, col] if not combined.empty else ""
cards_html += f'''
<div class="mini-card">
<div class="card-key">{col}</div>
<div class="card-val">{val}</div>
</div>
'''
cards_html += '</div>'
return cards_html
info_cards_html = merge_info_main_cards(rem_df, main_df)
# ================= Constituents table =================
cons_html = df_to_html_color(const_df) if not const_df.empty else "<i>No pre-open constituents</i>"
# ================= Metric tables (restricted to selected columns) =================
metric_cols_allowed = ["pChange", "totalTurnover", "marketCap", "totalTradedVolume"]
metric_cols = [c for c in metric_cols_allowed if c in const_df.columns and pd.api.types.is_numeric_dtype(const_df[c])] if not const_df.empty else []
metric_tables = ""
for col in metric_cols:
df_const = const_df.copy()
df_const[col] = pd.to_numeric(df_const[col], errors="ignore")
df_const = df_const.sort_values(col, ascending=False)
df_html = df_to_html_color(df_const[['symbol', col]] if 'symbol' in df_const.columns else df_const[[col]], metric_col=col)
metric_tables += f"""
<div class="small-table">
<div class="st-title">{col}</div>
<div class="st-body">{df_html}</div>
</div>
"""
# ================= FINAL HTML =================
html = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
body {{ font-family: Arial; margin: 12px; background: #f5f5f5; color: #222; font-size: 14px; }}
h2, h3 {{ margin: 12px 0 6px 0; font-weight: 600; }}
table {{ border-collapse: collapse; width: 100%; table-layout: auto; }}
th, td {{ border: 1px solid #bbb; padding: 5px 8px; text-align: left; font-size: 13px; }}
th {{ background: #333; color: white; font-weight: 600; }}
.compact-table td.numeric-positive {{ color: green; font-weight: bold; }}
.compact-table td.numeric-negative {{ color: red; font-weight: bold; }}
.compact-table td.top-up {{ background: #a8f0a5; }}
.compact-table td.top-down {{ background: #f0a8a8; }}
.small-table {{ background: white; border-radius: 6px; padding: 8px; box-shadow: 0px 1px 4px rgba(0,0,0,0.15); border: 1px solid #ddd; overflow-y: auto; }}
.st-title {{ font-size: 14px; text-align: center; margin-bottom: 6px; font-weight: bold; background: #222; color: white; padding: 5px 0; border-radius: 4px; }}
.st-body {{ max-height: 300px; overflow-y: auto; font-size: 12px; }}
.grid {{ display: grid; grid-template-columns: repeat(5, 1fr); gap: 12px; margin-top: 12px; }}
.mini-card-container {{ display: flex; flex-wrap: wrap; gap: 10px; }}
.mini-card {{ background: #fff; padding: 8px 10px; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12); min-width: 120px; font-size: 13px; }}
.card-key {{ font-weight: bold; color: #333; margin-bottom: 2px; }}
.card-val {{ color: #222; }}
</style>
</head>
<body>
<h2>Pre-Open Data: {key}</h2>
<div class="compact-section">
<h3>Info + Main Data</h3>
{info_cards_html}
</div>
<div class="compact-section">
<h3>Pre-Open Constituents</h3>
{cons_html}
</div>
<h3>Metric Tables (selected numeric)</h3>
<div class="grid">
{metric_tables}
</div>
</body>
</html>
"""
return html
|