backend / nsepython.py
eshan6704's picture
Update nsepython.py
e1bc562 verified
raw
history blame
10.4 kB
import os, sys, requests, pandas as pd, json, random, datetime, time, logging, re, urllib.parse
from collections import Counter
mode = 'local'
# ------------------------- NSE FETCH -------------------------
if mode == "vpn":
def nsefetch(payload):
def encode(url): return url if "%26" in url or "%20" in url else urllib.parse.quote(url, safe=":/?&=")
def refresh_cookies():
os.popen(f'curl -c cookies.txt "https://www.nseindia.com" {curl_headers}').read()
os.popen(f'curl -b cookies.txt -c cookies.txt "https://www.nseindia.com/option-chain" {curl_headers}').read()
if not os.path.exists("cookies.txt"): refresh_cookies()
encoded = encode(payload)
cmd = f'curl -b cookies.txt "{encoded}" {curl_headers}'
raw = os.popen(cmd).read()
try: return json.loads(raw)
except:
refresh_cookies()
raw = os.popen(cmd).read()
try: return json.loads(raw)
except: return {}
if mode == 'local':
def nsefetch(payload):
try:
s = requests.Session()
s.get("https://www.nseindia.com", headers=headers, timeout=10)
s.get("https://www.nseindia.com/option-chain", headers=headers, timeout=10)
return s.get(payload, headers=headers, timeout=10).json()
except:
return {}
# ------------------------- HEADERS -------------------------
headers = {
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
"accept-language": "en-US,en;q=0.9,en-IN;q=0.8,en-GB;q=0.7",
"cache-control": "max-age=0",
"priority": "u=0, i",
"sec-ch-ua": '"Microsoft Edge";v="129","Not=A?Brand";v="8","Chromium";v="129"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "document",
"sec-fetch-mode": "navigate",
"sec-fetch-site": "none",
"sec-fetch-user": "?1",
"upgrade-insecure-requests": "1",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36 Edg/129.0.0.0"
}
niftyindices_headers = {
'Connection': 'keep-alive',
'sec-ch-ua': '"Not;A Brand";v="99","Google Chrome";v="91","Chromium";v="91"',
'Accept': 'application/json,text/javascript,*/*;q=0.01',
'DNT': '1',
'X-Requested-With': 'XMLHttpRequest',
'sec-ch-ua-mobile': '?0',
'User-Agent': 'Mozilla/5.0',
'Content-Type': 'application/json; charset=UTF-8',
'Origin': 'https://niftyindices.com',
'Sec-Fetch-Site': 'same-origin',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Dest': 'empty',
'Referer': 'https://niftyindices.com/reports/historical-data',
'Accept-Language': 'en-US,en;q=0.9,hi;q=0.8'
}
curl_headers = ''' -H "authority: beta.nseindia.com" -H "cache-control: max-age=0" -H "dnt: 1" -H "upgrade-insecure-requests: 1" -H "user-agent: Mozilla/5.0" -H "sec-fetch-user: ?1" -H "accept: */*" -H "sec-fetch-site: none" -H "accept-language: en-US,en;q=0.9" --compressed'''
run_time = datetime.datetime.now()
indices = ['NIFTY','FINNIFTY','BANKNIFTY']
# ------------------------- HELPERS -------------------------
def nsesymbolpurify(s): return s.replace('&','%26')
def flatten_dict(d, parent="", sep="."):
items={}
for k,v in d.items():
nk = f"{parent}{sep}{k}" if parent else k
if isinstance(v, dict): items.update(flatten_dict(v, nk, sep))
else: items[nk] = v
return items
def flatten_nested(d, prefix=""):
flat={}
for k,v in d.items():
nk = f"{prefix}{k}" if prefix=="" else f"{prefix}.{k}"
if isinstance(v, dict):
flat.update(flatten_nested(v, nk))
elif isinstance(v, list):
if v and isinstance(v[0], dict):
for i,x in enumerate(v): flat.update(flatten_nested(x, f"{nk}.{i}"))
else: flat[nk]=v
else: flat[nk]=v
return flat
def rename_col(cols):
child=[c.split('.')[-1] for c in cols]
cnt=Counter(child)
new=[]
for c,ch in zip(cols,child):
if cnt[ch]==1: new.append(ch)
else:
p=c.split('.')
new.append(f"{p[-1]}_{p[-2]}" if len(p)>=2 else p[-1])
return new
def df_from_data(data):
rows=[ flatten_nested(x) if isinstance(x,dict) else {"value":x} for x in data ]
df=pd.DataFrame(rows)
df.columns=rename_col(df.columns)
return df
# ------------------------- API FUNCTIONS -------------------------
def indices():
p=nsefetch("https://www.nseindia.com/api/allIndices")
return {"data":pd.DataFrame(p.pop("data")), "dates":pd.DataFrame([p.pop("dates")]), "indices":pd.DataFrame([p])}
def eq(symbol):
symbol=nsesymbolpurify(symbol)
df=nsefetch(f'https://www.nseindia.com/api/quote-equity?symbol={symbol}')
pre=df.pop('preOpenMarket')
out={
"securityInfo": pd.DataFrame([df["securityInfo"]]),
"priceInfo": pd.DataFrame([flatten_dict(df["priceInfo"])]),
"industryInfo": pd.DataFrame([df["industryInfo"]]),
"pdSectorIndAll": pd.DataFrame([df["metadata"].pop("pdSectorIndAll")]),
"metadata": pd.DataFrame([df["metadata"]]),
"info": pd.DataFrame([df["info"]]),
"preOpen": pd.DataFrame(pre.pop('preopen')),
"preOpenMarket": pd.DataFrame([pre])
}
return out
def eq_fno(): return nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O')
def eq_der(symbol): return nsefetch('https://www.nseindia.com/api/quote-derivative?symbol='+nsesymbolpurify(symbol))
def index_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-indices?symbol='+nsesymbolpurify(symbol))
def eq_chain(symbol): return nsefetch('https://www.nseindia.com/api/option-chain-equities?symbol='+nsesymbolpurify(symbol))
def nse_holidays(t="trading"): return nsefetch('https://www.nseindia.com/api/holiday-master?type='+t)
def nse_results(index="equities",period="Quarterly"):
if index in ["equities","debt","sme"] and period in ["Quarterly","Annual","Half-Yearly","Others"]:
return pd.json_normalize(nsefetch(f'https://www.nseindia.com/api/corporates-financial-results?index={index}&period={period}'))
print("Invalid Input")
def nse_events(): return pd.json_normalize(nsefetch('https://www.nseindia.com/api/event-calendar'))
def nse_past_results(symbol): return nsefetch('https://www.nseindia.com/api/results-comparision?symbol='+nsesymbolpurify(symbol))
def nse_blockdeal(): return nsefetch('https://nseindia.com/api/block-deal')
def nse_marketStatus(): return nsefetch('https://nseindia.com/api/marketStatus')
def nse_circular(mode="latest"):
return nsefetch('https://www.nseindia.com/api/latest-circular' if mode=="latest" else 'https://www.nseindia.com/api/circulars')
def nse_fiidii(mode="pandas"):
try:
p=nsefetch('https://www.nseindia.com/api/fiidiiTradeReact')
return pd.DataFrame(p) if mode=="pandas" else p
except:
return nsefetch('https://www.nseindia.com/api/fiidiiTradeReact')
def nsetools_get_quote(symbol):
p=nsefetch('https://www.nseindia.com/api/equity-stockIndices?index=SECURITIES%20IN%20F%26O')
for x in p['data']:
if x['symbol']==symbol.upper(): return x
def nse_index():
p=nsefetch('https://iislliveblob.niftyindices.com/jsonfiles/LiveIndicesWatch.json')
return pd.DataFrame(p['data'])
def index_history(sym,sd,ed):
d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getHistoricaldatatabletoString', headers=niftyindices_headers, json=d).json()["d"])
return pd.DataFrame.from_records(p)
def index_pe_pb_div(sym,sd,ed):
d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getpepbHistoricaldataDBtoString', headers=niftyindices_headers, json=d).json()["d"])
return pd.DataFrame.from_records(p)
def index_total_returns(sym,sd,ed):
d={'cinfo':f"{{'name':'{sym}','startDate':'{sd}','endDate':'{ed}','indexName':'{sym}'}}"}
p=json.loads(requests.post('https://niftyindices.com/Backpage.aspx/getTotalReturnIndexString', headers=niftyindices_headers, json=d).json()["d"])
return pd.DataFrame.from_records(p)
def get_bhavcopy(d): return pd.read_csv("https://archives.nseindia.com/products/content/sec_bhavdata_full_"+d.replace("-","")+".csv")
def get_bulkdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/bulk.csv")
def get_blockdeals(): return pd.read_csv("https://archives.nseindia.com/content/equities/block.csv")
def nse_preopen(key="NIFTY"):
p=nsefetch("https://www.nseindia.com/api/market-data-pre-open?key="+key)
return {"data":df_from_data(p.pop("data")), "rem":df_from_data([p])}
def nse_most_active(t="securities",s="value"):
return pd.DataFrame(nsefetch(f"https://www.nseindia.com/api/live-analysis-most-active-{t}?index={s}")["data"])
def nse_eq_symbols():
return pd.read_csv('https://archives.nseindia.com/content/equities/EQUITY_L.csv')['SYMBOL'].tolist()
def nse_price_band_hitters(b="both",v="AllSec"):
p=nsefetch("https://www.nseindia.com/api/live-analysis-price-band-hitter")
return {"data":pd.DataFrame(p[b][v]["data"]), "count":pd.DataFrame([p['count']])}
def nse_largedeals(mode="bulk_deals"):
p=nsefetch('https://www.nseindia.com/api/snapshot-capital-market-largedeal')
return pd.DataFrame(p["BULK_DEALS_DATA" if mode=="bulk_deals" else "SHORT_DEALS_DATA" if mode=="short_deals" else "BLOCK_DEALS_DATA"])
def nse_largedeals_historical(f,t,mode="bulk_deals"):
m = "bulk-deals" if mode=="bulk_deals" else "short-selling" if mode=="short_deals" else "block-deals"
p=nsefetch(f'https://www.nseindia.com/api/historical/{m}?from={f}&to={t}')
return pd.DataFrame(p["data"])
def stock_hist(f,t,symbol,series="ALL"):
url=f"https://www.nseindia.com/api/historical/securityArchives?from={f}&to={t}&symbol={symbol.upper()}&dataType=priceVolumeDeliverable&series={series}"
return pd.DataFrame(nsefetch(url)['data'])
def nse_index_live(name="NIFTY 50"):
p=nsefetch(f"https://www.nseindia.com/api/equity-stockIndices?index={name.replace(' ','%20')}")
return {"data":df_from_data(p.pop("data")) if "data" in p else pd.DataFrame(), "rem":df_from_data([p])}