|
|
import yfinance as yf |
|
|
import pandas as pd |
|
|
import io |
|
|
import requests |
|
|
|
|
|
from datetime import datetime, timedelta |
|
|
from ta_indi_pat import talib_df |
|
|
from common import html_card, wrap_html |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nse_del_key_map = { |
|
|
'Symbol': "Symbol", 'Series': "Series", |
|
|
'Date': 'Date', 'Prev Close': 'Preclose', |
|
|
'Open Price': 'Open', 'High Price': 'High', |
|
|
'Low Price': 'Low', 'Last Price': 'Last', |
|
|
'Close Price': 'Close', 'Average Price': 'AvgPrice', |
|
|
'Total Traded Quantity': 'Volume', |
|
|
'Turnover ₹': 'Turnover', 'No. of Trades': "Trades", |
|
|
'Deliverable Qty': "Delivery", '% Dly Qt to Traded Qty': "Del%" |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def url_nse_del(symbol, start_date, end_date): |
|
|
base_url = "https://www.nseindia.com/api/historicalOR/generateSecurityWiseHistoricalData" |
|
|
start_date_str = start_date.strftime("%d-%m-%Y") |
|
|
end_date_str = end_date.strftime("%d-%m-%Y") |
|
|
url = f"{base_url}?from={start_date_str}&to={end_date_str}&symbol={symbol.split('.')[0]}&type=priceVolumeDeliverable&series=ALL&csv=true" |
|
|
return url |
|
|
|
|
|
def to_numeric_safe(series): |
|
|
series = series.replace('-', 0) |
|
|
series = series.fillna(0) |
|
|
series = series.astype(str).str.replace(',', '') |
|
|
return pd.to_numeric(series, errors='coerce').fillna(0) |
|
|
|
|
|
|
|
|
def nse_del(symbol, start_date_str=None, end_date_str=None): |
|
|
|
|
|
end_date = datetime.now() |
|
|
if end_date_str: |
|
|
try: |
|
|
end_date = datetime.strptime(end_date_str, "%Y-%m-%d") |
|
|
except ValueError: |
|
|
print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.") |
|
|
end_date = datetime.now() |
|
|
|
|
|
|
|
|
start_date = end_date - timedelta(days=365) |
|
|
if start_date_str: |
|
|
try: |
|
|
start_date = datetime.strptime(start_date_str, "%Y-%m-%d") |
|
|
except ValueError: |
|
|
print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.") |
|
|
start_date = end_date - timedelta(days=365) |
|
|
|
|
|
|
|
|
if start_date > end_date: |
|
|
print("Warning: Start date is after end date. Swapping dates.") |
|
|
start_date, end_date = end_date, start_date |
|
|
|
|
|
url = url_nse_del(symbol, start_date, end_date) |
|
|
headers = { |
|
|
'User-Agent': 'Mozilla/5.0' |
|
|
} |
|
|
try: |
|
|
response = requests.get(url, headers=headers) |
|
|
response.raise_for_status() |
|
|
if response.content: |
|
|
df = pd.read_csv(io.StringIO(response.content.decode('utf-8'))).round(2) |
|
|
df.columns = df.columns.str.strip() |
|
|
df.rename(columns=nse_del_key_map, inplace=True) |
|
|
|
|
|
|
|
|
df.columns = [col.capitalize() for col in df.columns] |
|
|
|
|
|
|
|
|
df.drop(columns=['Symbol','Series','Avgprice','Last'], errors='ignore', inplace=True) |
|
|
|
|
|
|
|
|
df['Date'] = pd.to_datetime(df['Date'], format='%d-%b-%Y').dt.strftime('%Y-%m-%d') |
|
|
|
|
|
numeric_cols = ['Close', 'Preclose', 'Open', 'High', 'Low', 'Volume', 'Delivery', 'Turnover', 'Trades'] |
|
|
|
|
|
numeric_cols_capitalized = [col.capitalize() for col in numeric_cols] |
|
|
for col in numeric_cols_capitalized: |
|
|
if col in df.columns: |
|
|
df[col] = to_numeric_safe(df[col]) |
|
|
else: |
|
|
df[col] = 0 |
|
|
return df |
|
|
except Exception as e: |
|
|
print(f"Error fetching data from NSE for {symbol}: {e}") |
|
|
return None |
|
|
|
|
|
def daily(symbol,source="yfinace"): |
|
|
if source=="yfinance": |
|
|
df = yf.download(symbol + ".NS", period="1y", interval="1d").round(2) |
|
|
if df.empty: |
|
|
return html_card("Error", f"No daily data found for {symbol}") |
|
|
|
|
|
|
|
|
df.columns = ["Close", "High", "Low", "Open", "Volume"] |
|
|
df.reset_index(inplace=True) |
|
|
|
|
|
if source=="NSE": |
|
|
df=nse_del(symbol) |
|
|
print("df from nse data") |
|
|
return df |
|
|
def fetch_daily(symbol, source,max_rows=200): |
|
|
""" |
|
|
Fetch daily OHLCV data, calculate TA-Lib indicators + patterns, |
|
|
return a single scrollable HTML table. |
|
|
""" |
|
|
try: |
|
|
|
|
|
df=daily(symbol,source) |
|
|
|
|
|
|
|
|
df_display = df.head(max_rows) |
|
|
|
|
|
|
|
|
combined_df = talib_df(df_display) |
|
|
|
|
|
|
|
|
table_html = combined_df.to_html( |
|
|
classes="table table-striped table-bordered", |
|
|
index=False |
|
|
) |
|
|
|
|
|
|
|
|
scrollable_html = f""" |
|
|
<div style="overflow-x:auto; overflow-y:auto; max-height:600px; border:1px solid #ccc; padding:5px;"> |
|
|
{table_html} |
|
|
</div> |
|
|
""" |
|
|
|
|
|
|
|
|
content = f""" |
|
|
<h2>{symbol} - Daily Data (OHLCV + Indicators + Patterns)</h2> |
|
|
{html_card("TA-Lib Data", scrollable_html)} |
|
|
""" |
|
|
|
|
|
return wrap_html(content, title=f"{symbol} Daily Data") |
|
|
|
|
|
except Exception as e: |
|
|
return html_card("Error", str(e)) |
|
|
|