eshan6704 commited on
Commit
858b3fa
·
verified ·
1 Parent(s): 89669ae

Update daily.py

Browse files
Files changed (1) hide show
  1. daily.py +0 -104
daily.py CHANGED
@@ -6,110 +6,6 @@ import requests
6
  from datetime import datetime, timedelta
7
  from ta_indi_pat import talib_df # use the combined talib_df function
8
  from common import html_card, wrap_html
9
-
10
- # -----------------------------
11
- # Global Variables
12
- # -----------------------------
13
- nse_del_key_map = {
14
- 'Symbol': "Symbol", 'Series': "Series",
15
- 'Date': 'Date', 'Prev Close': 'Preclose',
16
- 'Open Price': 'Open', 'High Price': 'High',
17
- 'Low Price': 'Low', 'Last Price': 'Last',
18
- 'Close Price': 'Close', 'Average Price': 'AvgPrice',
19
- 'Total Traded Quantity': 'Volume',
20
- 'Turnover ₹': 'Turnover', 'No. of Trades': "Trades",
21
- 'Deliverable Qty': "Delivery", '% Dly Qt to Traded Qty': "Del%"
22
- }
23
-
24
- # -----------------------------
25
- # Data Fetching Functions (NSE)
26
- # -----------------------------
27
- def url_nse_del(symbol, start_date, end_date):
28
- base_url = "https://www.nseindia.com/api/historicalOR/generateSecurityWiseHistoricalData"
29
- start_date_str = start_date.strftime("%d-%m-%Y")
30
- end_date_str = end_date.strftime("%d-%m-%Y")
31
- url = f"{base_url}?from={start_date_str}&to={end_date_str}&symbol={symbol.split('.')[0]}&type=priceVolumeDeliverable&series=ALL&csv=true"
32
- return url
33
-
34
- def to_numeric_safe(series):
35
- series = series.replace('-', 0)
36
- series = series.fillna(0)
37
- series = series.astype(str).str.replace(',', '')
38
- return pd.to_numeric(series, errors='coerce').fillna(0)
39
-
40
-
41
- def nse_del(symbol, start_date_str=None, end_date_str=None):
42
- # Default end date is today
43
- end_date = datetime.now()
44
- if end_date_str:
45
- try:
46
- end_date = datetime.strptime(end_date_str, "%Y-%m-%d")
47
- except ValueError:
48
- print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.")
49
- end_date = datetime.now()
50
-
51
- # Default start date is one year prior to end_date
52
- start_date = end_date - timedelta(days=365)
53
- if start_date_str:
54
- try:
55
- start_date = datetime.strptime(start_date_str, "%Y-%m-%d")
56
- except ValueError:
57
- print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.")
58
- start_date = end_date - timedelta(days=365)
59
-
60
- # Ensure start_date is not after end_date
61
- if start_date > end_date:
62
- print("Warning: Start date is after end date. Swapping dates.")
63
- start_date, end_date = end_date, start_date
64
-
65
- url = url_nse_del(symbol, start_date, end_date)
66
- headers = {
67
- 'User-Agent': 'Mozilla/5.0'
68
- }
69
- try:
70
- response = requests.get(url, headers=headers)
71
- response.raise_for_status()
72
- if response.content:
73
- df = pd.read_csv(io.StringIO(response.content.decode('utf-8'))).round(2)
74
- df.columns = df.columns.str.strip()
75
- df.rename(columns=nse_del_key_map, inplace=True)
76
-
77
- # Capitalize the first letter of ALL column names after renaming
78
- df.columns = [col.capitalize() for col in df.columns]
79
-
80
- # Remove 'Symbol', 'Series', 'Avgprice', and 'Last' columns (now capitalized)
81
- df.drop(columns=['Symbol','Series','Avgprice','Last'], errors='ignore', inplace=True)
82
-
83
- # Convert 'Date' column to datetime objects
84
- df['Date'] = pd.to_datetime(df['Date'], format='%d-%b-%Y').dt.strftime('%Y-%m-%d')
85
-
86
- numeric_cols = ['Close', 'Preclose', 'Open', 'High', 'Low', 'Volume', 'Delivery', 'Turnover', 'Trades']
87
- # Ensure numeric_cols are capitalized before checking and conversion
88
- numeric_cols_capitalized = [col.capitalize() for col in numeric_cols]
89
- for col in numeric_cols_capitalized:
90
- if col in df.columns:
91
- df[col] = to_numeric_safe(df[col])
92
- else:
93
- df[col] = 0
94
- return df
95
- except Exception as e:
96
- print(f"Error fetching data from NSE for {symbol}: {e}")
97
- return None
98
-
99
- def daily(symbol,source="yfinace"):
100
- if source=="yfinance":
101
- df = yf.download(symbol + ".NS", period="1y", interval="1d").round(2)
102
- if df.empty:
103
- return html_card("Error", f"No daily data found for {symbol}")
104
-
105
- # --- Standardize columns ---
106
- df.columns = ["Close", "High", "Low", "Open", "Volume"]
107
- df.reset_index(inplace=True) # make Date a column
108
-
109
- if source=="NSE":
110
- df=nse_del(symbol)
111
- print("df from nse data")
112
- return df
113
  def fetch_daily(symbol, source,max_rows=200):
114
  """
115
  Fetch daily OHLCV data, calculate TA-Lib indicators + patterns,
 
6
  from datetime import datetime, timedelta
7
  from ta_indi_pat import talib_df # use the combined talib_df function
8
  from common import html_card, wrap_html
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  def fetch_daily(symbol, source,max_rows=200):
10
  """
11
  Fetch daily OHLCV data, calculate TA-Lib indicators + patterns,