Update nse.py
Browse files
nse.py
CHANGED
|
@@ -106,18 +106,34 @@ def indices():
|
|
| 106 |
# ---------------------------------------------------
|
| 107 |
# Specific Index β DataFrames
|
| 108 |
# ---------------------------------------------------
|
| 109 |
-
def
|
| 110 |
url = f"https://www.nseindia.com/api/equity-stockIndices?index={index_name.replace(' ', '%20')}"
|
| 111 |
data = fetch_data(url)
|
| 112 |
if data is None:
|
| 113 |
-
return None
|
| 114 |
|
|
|
|
| 115 |
df_market = pd.DataFrame([data["marketStatus"]])
|
| 116 |
-
df_adv
|
| 117 |
-
df_meta
|
| 118 |
-
df_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
return df_market, df_adv, df_meta, df_data
|
| 121 |
|
| 122 |
# ---------------------------------------------------
|
| 123 |
# Option Chain DF (Raw CE/PE)
|
|
@@ -136,22 +152,31 @@ def fetch_option_chain_df(symbol="NIFTY"):
|
|
| 136 |
# ---------------------------------------------------
|
| 137 |
# Pre-open market β DataFrame
|
| 138 |
# ---------------------------------------------------
|
| 139 |
-
def
|
| 140 |
url = f"https://www.nseindia.com/api/market-data-pre-open?key={key}"
|
| 141 |
data = fetch_data(url)
|
| 142 |
-
if data:
|
| 143 |
-
return
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# ---------------------------------------------------
|
| 147 |
# FNO Quote β DataFrames
|
| 148 |
# ---------------------------------------------------
|
| 149 |
-
def
|
| 150 |
-
payload = nsepython.nse_quote(symbol)
|
| 151 |
if not payload:
|
| 152 |
return None
|
| 153 |
|
| 154 |
-
#
|
| 155 |
info_keys = list(payload["info"].keys()) + [
|
| 156 |
"fut_timestamp",
|
| 157 |
"opt_timestamp",
|
|
@@ -170,18 +195,30 @@ def nse_fno_df(symbol):
|
|
| 170 |
|
| 171 |
df_info = pd.DataFrame([info_values], columns=info_keys)
|
| 172 |
|
|
|
|
| 173 |
df_mcap = pd.DataFrame(payload["underlyingInfo"].get("marketCap", {}))
|
|
|
|
|
|
|
| 174 |
df_fno_list = pd.DataFrame(payload.get("allSymbol", []), columns=["FNO_Symbol"])
|
| 175 |
|
| 176 |
-
#
|
| 177 |
df_stock = process_stocks_df(payload["stocks"])
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# ---------------------------------------------------
|
| 187 |
# Handle nested stock β DF
|
|
@@ -275,8 +312,7 @@ def to_numeric_safe(series):
|
|
| 275 |
series = series.astype(str).str.replace(',', '')
|
| 276 |
return pd.to_numeric(series, errors='coerce').fillna(0)
|
| 277 |
|
| 278 |
-
|
| 279 |
-
def nse_del(symbol, start_date_str=None, end_date_str=None):
|
| 280 |
# Default end date is today
|
| 281 |
end_date = datetime.now()
|
| 282 |
if end_date_str:
|
|
@@ -286,7 +322,7 @@ def nse_del(symbol, start_date_str=None, end_date_str=None):
|
|
| 286 |
print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.")
|
| 287 |
end_date = datetime.now()
|
| 288 |
|
| 289 |
-
# Default start date is one year prior
|
| 290 |
start_date = end_date - timedelta(days=365)
|
| 291 |
if start_date_str:
|
| 292 |
try:
|
|
@@ -295,41 +331,52 @@ def nse_del(symbol, start_date_str=None, end_date_str=None):
|
|
| 295 |
print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.")
|
| 296 |
start_date = end_date - timedelta(days=365)
|
| 297 |
|
| 298 |
-
#
|
| 299 |
if start_date > end_date:
|
| 300 |
print("Warning: Start date is after end date. Swapping dates.")
|
| 301 |
start_date, end_date = end_date, start_date
|
| 302 |
|
| 303 |
url = url_nse_del(symbol, start_date, end_date)
|
| 304 |
-
headers = {
|
| 305 |
-
|
| 306 |
-
}
|
| 307 |
try:
|
| 308 |
response = requests.get(url, headers=headers)
|
| 309 |
response.raise_for_status()
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
except Exception as e:
|
| 334 |
print(f"Error fetching data from NSE for {symbol}: {e}")
|
| 335 |
-
|
|
|
|
|
|
| 106 |
# ---------------------------------------------------
|
| 107 |
# Specific Index β DataFrames
|
| 108 |
# ---------------------------------------------------
|
| 109 |
+
def open(index_name="NIFTY 50"):
|
| 110 |
url = f"https://www.nseindia.com/api/equity-stockIndices?index={index_name.replace(' ', '%20')}"
|
| 111 |
data = fetch_data(url)
|
| 112 |
if data is None:
|
| 113 |
+
return None
|
| 114 |
|
| 115 |
+
# Create DataFrames
|
| 116 |
df_market = pd.DataFrame([data["marketStatus"]])
|
| 117 |
+
df_adv = pd.DataFrame([data["advance"]])
|
| 118 |
+
df_meta = pd.DataFrame([data["metadata"]])
|
| 119 |
+
df_data = pd.DataFrame(data["data"])
|
| 120 |
+
|
| 121 |
+
# Convert to HTML
|
| 122 |
+
html_market = df_market.to_html(index=False, border=1)
|
| 123 |
+
html_adv = df_adv.to_html(index=False, border=1)
|
| 124 |
+
html_meta = df_meta.to_html(index=False, border=1)
|
| 125 |
+
html_data = df_data.to_html(index=False, border=1)
|
| 126 |
+
|
| 127 |
+
# Combine all into single HTML string
|
| 128 |
+
full_html = (
|
| 129 |
+
"<h3>Market Status</h3>" + html_market +
|
| 130 |
+
"<br><h3>Advance / Decline</h3>" + html_adv +
|
| 131 |
+
"<br><h3>Metadata</h3>" + html_meta +
|
| 132 |
+
"<br><h3>Index Data</h3>" + html_data
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
return full_html
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
# ---------------------------------------------------
|
| 139 |
# Option Chain DF (Raw CE/PE)
|
|
|
|
| 152 |
# ---------------------------------------------------
|
| 153 |
# Pre-open market β DataFrame
|
| 154 |
# ---------------------------------------------------
|
| 155 |
+
def preopen(key="NIFTY"):
|
| 156 |
url = f"https://www.nseindia.com/api/market-data-pre-open?key={key}"
|
| 157 |
data = fetch_data(url)
|
| 158 |
+
if not data:
|
| 159 |
+
return None
|
| 160 |
+
|
| 161 |
+
df = pd.DataFrame(data.get("data", []))
|
| 162 |
+
|
| 163 |
+
# Convert to one HTML table
|
| 164 |
+
html_table = df.to_html(index=False, border=1)
|
| 165 |
+
|
| 166 |
+
# Wrap into single block
|
| 167 |
+
full_html = "<h3>Pre-Open Market Data</h3>" + html_table
|
| 168 |
+
|
| 169 |
+
return full_html
|
| 170 |
|
| 171 |
# ---------------------------------------------------
|
| 172 |
# FNO Quote β DataFrames
|
| 173 |
# ---------------------------------------------------
|
| 174 |
+
def fno(symbol):
|
| 175 |
+
payload = nsepython.nse_quote(symbol)
|
| 176 |
if not payload:
|
| 177 |
return None
|
| 178 |
|
| 179 |
+
# ---------- INFO ----------
|
| 180 |
info_keys = list(payload["info"].keys()) + [
|
| 181 |
"fut_timestamp",
|
| 182 |
"opt_timestamp",
|
|
|
|
| 195 |
|
| 196 |
df_info = pd.DataFrame([info_values], columns=info_keys)
|
| 197 |
|
| 198 |
+
# ---------- MCAP ----------
|
| 199 |
df_mcap = pd.DataFrame(payload["underlyingInfo"].get("marketCap", {}))
|
| 200 |
+
|
| 201 |
+
# ---------- FNO LIST ----------
|
| 202 |
df_fno_list = pd.DataFrame(payload.get("allSymbol", []), columns=["FNO_Symbol"])
|
| 203 |
|
| 204 |
+
# ---------- STOCK DEPTH ----------
|
| 205 |
df_stock = process_stocks_df(payload["stocks"])
|
| 206 |
|
| 207 |
+
# Convert all to HTML
|
| 208 |
+
html_info = df_info.to_html(index=False, border=1)
|
| 209 |
+
html_mcap = df_mcap.to_html(index=False, border=1)
|
| 210 |
+
html_fno = df_fno_list.to_html(index=False, border=1)
|
| 211 |
+
html_stock = df_stock.to_html(index=False, border=1)
|
| 212 |
+
|
| 213 |
+
# Combine into full HTML block
|
| 214 |
+
full_html = (
|
| 215 |
+
"<h3>FNO Info</h3>" + html_info +
|
| 216 |
+
"<br><h3>Market Cap</h3>" + html_mcap +
|
| 217 |
+
"<br><h3>FNO Symbol List</h3>" + html_fno +
|
| 218 |
+
"<br><h3>Stock Depth</h3>" + html_stock
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
return full_html
|
| 222 |
|
| 223 |
# ---------------------------------------------------
|
| 224 |
# Handle nested stock β DF
|
|
|
|
| 312 |
series = series.astype(str).str.replace(',', '')
|
| 313 |
return pd.to_numeric(series, errors='coerce').fillna(0)
|
| 314 |
|
| 315 |
+
def nse_daily(symbol, start_date_str=None, end_date_str=None):
|
|
|
|
| 316 |
# Default end date is today
|
| 317 |
end_date = datetime.now()
|
| 318 |
if end_date_str:
|
|
|
|
| 322 |
print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.")
|
| 323 |
end_date = datetime.now()
|
| 324 |
|
| 325 |
+
# Default start date is one year prior
|
| 326 |
start_date = end_date - timedelta(days=365)
|
| 327 |
if start_date_str:
|
| 328 |
try:
|
|
|
|
| 331 |
print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.")
|
| 332 |
start_date = end_date - timedelta(days=365)
|
| 333 |
|
| 334 |
+
# Swap if needed
|
| 335 |
if start_date > end_date:
|
| 336 |
print("Warning: Start date is after end date. Swapping dates.")
|
| 337 |
start_date, end_date = end_date, start_date
|
| 338 |
|
| 339 |
url = url_nse_del(symbol, start_date, end_date)
|
| 340 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
| 341 |
+
|
|
|
|
| 342 |
try:
|
| 343 |
response = requests.get(url, headers=headers)
|
| 344 |
response.raise_for_status()
|
| 345 |
+
|
| 346 |
+
if not response.content:
|
| 347 |
+
return None
|
| 348 |
+
|
| 349 |
+
# Build DataFrame
|
| 350 |
+
df = pd.read_csv(io.StringIO(response.content.decode("utf-8"))).round(2)
|
| 351 |
+
df.columns = df.columns.str.strip()
|
| 352 |
+
df.rename(columns=nse_del_key_map, inplace=True)
|
| 353 |
+
|
| 354 |
+
# Capitalize column names
|
| 355 |
+
df.columns = [col.capitalize() for col in df.columns]
|
| 356 |
+
|
| 357 |
+
# Remove unwanted columns
|
| 358 |
+
df.drop(columns=["Symbol", "Series", "Avgprice", "Last"], errors="ignore", inplace=True)
|
| 359 |
+
|
| 360 |
+
# Format date
|
| 361 |
+
df["Date"] = pd.to_datetime(df["Date"], format="%d-%b-%Y").dt.strftime("%Y-%m-%d")
|
| 362 |
+
|
| 363 |
+
# Ensure numeric columns
|
| 364 |
+
numeric_cols = ['Close', 'Preclose', 'Open', 'High', 'Low', 'Volume', 'Delivery', 'Turnover', 'Trades']
|
| 365 |
+
numeric_cols_cap = [c.capitalize() for c in numeric_cols]
|
| 366 |
+
|
| 367 |
+
for col in numeric_cols_cap:
|
| 368 |
+
if col in df.columns:
|
| 369 |
+
df[col] = to_numeric_safe(df[col])
|
| 370 |
+
else:
|
| 371 |
+
df[col] = 0
|
| 372 |
+
|
| 373 |
+
# Convert to HTML
|
| 374 |
+
html_table = df.to_html(index=False, border=1)
|
| 375 |
+
|
| 376 |
+
full_html = "<h3>Daily Data</h3>" + html_table
|
| 377 |
+
return full_html
|
| 378 |
+
|
| 379 |
except Exception as e:
|
| 380 |
print(f"Error fetching data from NSE for {symbol}: {e}")
|
| 381 |
+
return None
|
| 382 |
+
|