Create stock.py
Browse files
stock.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
def yfinfo(symbol):
|
| 6 |
+
|
| 7 |
+
tk = yf.Ticker(symbol + ".NS")
|
| 8 |
+
return tk.info
|
| 9 |
+
|
| 10 |
+
def qresult(symbol):
|
| 11 |
+
|
| 12 |
+
ticker = yf.Ticker(symbol + ".NS")
|
| 13 |
+
df = ticker.quarterly_financials
|
| 14 |
+
return df
|
| 15 |
+
|
| 16 |
+
def result(symbol):
|
| 17 |
+
|
| 18 |
+
ticker = yf.Ticker(symbol + ".NS")
|
| 19 |
+
df = ticker.financials
|
| 20 |
+
return df
|
| 21 |
+
|
| 22 |
+
def balance(symbol):
|
| 23 |
+
|
| 24 |
+
ticker = yf.Ticker(symbol + ".NS")
|
| 25 |
+
df = ticker.balance_sheet
|
| 26 |
+
return df
|
| 27 |
+
|
| 28 |
+
def cashflow(symbol):
|
| 29 |
+
|
| 30 |
+
ticker = yf.Ticker(symbol + ".NS")
|
| 31 |
+
df = ticker.cashflow
|
| 32 |
+
return df
|
| 33 |
+
|
| 34 |
+
def dividend(symbol):
|
| 35 |
+
ticker = yf.Ticker(symbol + ".NS")
|
| 36 |
+
df = ticker.dividends.to_frame('Dividend')
|
| 37 |
+
return df
|
| 38 |
+
|
| 39 |
+
def split(symbol):
|
| 40 |
+
ticker = yf.Ticker(symbol + ".NS")
|
| 41 |
+
df = ticker.splits.to_frame('Split')
|
| 42 |
+
return df
|
| 43 |
+
|
| 44 |
+
def intraday(symbol):
|
| 45 |
+
|
| 46 |
+
df = ticker.download(symbol + ".NS",period="1d",interval="5min").round(2)
|
| 47 |
+
return df
|
| 48 |
+
|
| 49 |
+
def daily(symbol):
|
| 50 |
+
|
| 51 |
+
df = ticker.download(symbol + ".NS",period="1y",interval="1d").round(2)
|
| 52 |
+
return df
|
| 53 |
+
|
| 54 |
+
# ============================
|
| 55 |
+
# info.py — Company Info Page
|
| 56 |
+
# EXACT SAME LOOK AS BEFORE
|
| 57 |
+
# ============================
|
| 58 |
+
|
| 59 |
+
import yfinance as yf
|
| 60 |
+
import pandas as pd
|
| 61 |
+
import traceback
|
| 62 |
+
|
| 63 |
+
from yf import yfinfo
|
| 64 |
+
|
| 65 |
+
from common import (format_number,format_large_number,make_table,html_card,html_section,html_error,clean_df,safe_get)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def fetch_info(symbol: str):
|
| 69 |
+
"""
|
| 70 |
+
Fetch full company info and return the SAME layout you used earlier.
|
| 71 |
+
Only internal code updated to use common.py helpers.
|
| 72 |
+
"""
|
| 73 |
+
try:
|
| 74 |
+
|
| 75 |
+
info = yfinfo(symbol)
|
| 76 |
+
|
| 77 |
+
if not info:
|
| 78 |
+
return html_error(f"No information found for {symbol}")
|
| 79 |
+
|
| 80 |
+
# ===== BASIC DETAILS =====
|
| 81 |
+
basic = {
|
| 82 |
+
"Symbol": symbol,
|
| 83 |
+
"Name": safe_get(info, "longName"),
|
| 84 |
+
"Sector": safe_get(info, "sector"),
|
| 85 |
+
"Industry": safe_get(info, "industry"),
|
| 86 |
+
"Website": safe_get(info, "website"),
|
| 87 |
+
"Employee Count": format_large_number(safe_get(info, "fullTimeEmployees")),
|
| 88 |
+
}
|
| 89 |
+
df_basic = pd.DataFrame(basic.items(), columns=["Field", "Value"])
|
| 90 |
+
basic_html = make_table(df_basic)
|
| 91 |
+
|
| 92 |
+
# ===== PRICE DETAILS =====
|
| 93 |
+
price_info = {
|
| 94 |
+
"Current Price": format_number(safe_get(info, "currentPrice")),
|
| 95 |
+
"Previous Close": format_number(safe_get(info, "previousClose")),
|
| 96 |
+
"Open": format_number(safe_get(info, "open")),
|
| 97 |
+
"Day High": format_number(safe_get(info, "dayHigh")),
|
| 98 |
+
"Day Low": format_number(safe_get(info, "dayLow")),
|
| 99 |
+
"52W High": format_number(safe_get(info, "fiftyTwoWeekHigh")),
|
| 100 |
+
"52W Low": format_number(safe_get(info, "fiftyTwoWeekLow")),
|
| 101 |
+
"Volume": format_large_number(safe_get(info, "volume")),
|
| 102 |
+
"Avg Volume": format_large_number(safe_get(info, "averageVolume")),
|
| 103 |
+
}
|
| 104 |
+
df_price = pd.DataFrame(price_info.items(), columns=["Field", "Value"])
|
| 105 |
+
price_html = make_table(df_price)
|
| 106 |
+
|
| 107 |
+
# ===== VALUATION METRICS =====
|
| 108 |
+
valuation = {
|
| 109 |
+
"Market Cap": format_large_number(safe_get(info, "marketCap")),
|
| 110 |
+
"PE Ratio": format_number(safe_get(info, "trailingPE")),
|
| 111 |
+
"EPS": format_number(safe_get(info, "trailingEps")),
|
| 112 |
+
"PB Ratio": format_number(safe_get(info, "priceToBook")),
|
| 113 |
+
"Dividend Yield": format_number(safe_get(info, "dividendYield")),
|
| 114 |
+
"ROE": format_number(safe_get(info, "returnOnEquity")),
|
| 115 |
+
"ROA": format_number(safe_get(info, "returnOnAssets")),
|
| 116 |
+
}
|
| 117 |
+
df_val = pd.DataFrame(valuation.items(), columns=["Field", "Value"])
|
| 118 |
+
val_html = make_table(df_val)
|
| 119 |
+
|
| 120 |
+
# ===== COMPANY EXTRA DETAILS =====
|
| 121 |
+
extra = {
|
| 122 |
+
"Beta": format_number(safe_get(info, "beta")),
|
| 123 |
+
"Revenue": format_large_number(safe_get(info, "totalRevenue")),
|
| 124 |
+
"Gross Margins": format_number(safe_get(info, "grossMargins")),
|
| 125 |
+
"Operating Margins": format_number(safe_get(info, "operatingMargins")),
|
| 126 |
+
"Profit Margins": format_number(safe_get(info, "profitMargins")),
|
| 127 |
+
"Book Value": format_number(safe_get(info, "bookValue")),
|
| 128 |
+
}
|
| 129 |
+
df_extra = pd.DataFrame(extra.items(), columns=["Field", "Value"])
|
| 130 |
+
extra_html = make_table(df_extra)
|
| 131 |
+
|
| 132 |
+
# ========================
|
| 133 |
+
# Final HTML (Same Layout)
|
| 134 |
+
# ========================
|
| 135 |
+
final_html = (
|
| 136 |
+
html_card("Basic Information", basic_html)
|
| 137 |
+
+ html_card("Price Details", price_html)
|
| 138 |
+
+ html_card("Valuation Metrics", val_html)
|
| 139 |
+
+ html_card("Additional Company Data", extra_html)
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
return final_html
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
return html_error(f"INFO MODULE ERROR: {e}<br><pre>{traceback.format_exc()}</pre>")
|
| 146 |
+
# intraday.py
|
| 147 |
+
import yfinance as yf
|
| 148 |
+
import pandas as pd
|
| 149 |
+
from common import format_large_number, wrap_html, make_table
|
| 150 |
+
from chart_builder import build_chart
|
| 151 |
+
from yf import intraday
|
| 152 |
+
# ============================================================
|
| 153 |
+
# INTRADAY DATA PROCESSING
|
| 154 |
+
# ============================================================
|
| 155 |
+
|
| 156 |
+
def fetch_intraday(symbol, indicators=None):
|
| 157 |
+
|
| 158 |
+
try:
|
| 159 |
+
# Fetch 1-day intraday 5-min interval
|
| 160 |
+
df = intraday(symbol)
|
| 161 |
+
if df.empty:
|
| 162 |
+
return wrap_html(f"<h1>No intraday data available for {symbol}</h1>")
|
| 163 |
+
|
| 164 |
+
# Reset MultiIndex if exists
|
| 165 |
+
if isinstance(df.columns, pd.MultiIndex):
|
| 166 |
+
df.columns = df.columns.get_level_values(0)
|
| 167 |
+
|
| 168 |
+
# Build chart with indicators
|
| 169 |
+
chart_html = build_chart(df, indicators=indicators, volume=True)
|
| 170 |
+
|
| 171 |
+
# Format last 50 rows for table
|
| 172 |
+
table_html = make_table(df.tail(50))
|
| 173 |
+
|
| 174 |
+
# Wrap in full HTML
|
| 175 |
+
full_html = wrap_html(f"{chart_html}<h2>Recent Intraday Data (last 50 rows)</h2>{table_html}",
|
| 176 |
+
title=f"Intraday Data for {symbol}")
|
| 177 |
+
return full_html
|
| 178 |
+
|
| 179 |
+
except Exception as e:
|
| 180 |
+
return wrap_html(f"<h1>Error fetching intraday data for {symbol}</h1><p>{str(e)}</p>")
|
| 181 |
+
|
| 182 |
+
import yfinance as yf
|
| 183 |
+
import pandas as pd
|
| 184 |
+
import io
|
| 185 |
+
import requests
|
| 186 |
+
from nse import daily
|
| 187 |
+
from datetime import datetime, timedelta
|
| 188 |
+
from ta_indi_pat import talib_df # use the combined talib_df function
|
| 189 |
+
from common import html_card, wrap_html
|
| 190 |
+
def fetch_daily(symbol, source,max_rows=200):
|
| 191 |
+
"""
|
| 192 |
+
Fetch daily OHLCV data, calculate TA-Lib indicators + patterns,
|
| 193 |
+
return a single scrollable HTML table.
|
| 194 |
+
"""
|
| 195 |
+
try:
|
| 196 |
+
# --- Fetch daily data ---
|
| 197 |
+
df=daily(symbol,source)
|
| 198 |
+
|
| 199 |
+
# --- Limit rows for display ---
|
| 200 |
+
df_display = df.head(max_rows)
|
| 201 |
+
|
| 202 |
+
# --- Generate combined TA-Lib DataFrame ---
|
| 203 |
+
combined_df = talib_df(df_display)
|
| 204 |
+
|
| 205 |
+
# --- Convert to HTML table ---
|
| 206 |
+
table_html = combined_df.to_html(
|
| 207 |
+
classes="table table-striped table-bordered",
|
| 208 |
+
index=False
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# --- Wrap in scrollable div ---
|
| 212 |
+
scrollable_html = f"""
|
| 213 |
+
<div style="overflow-x:auto; overflow-y:auto; max-height:600px; border:1px solid #ccc; padding:5px;">
|
| 214 |
+
{table_html}
|
| 215 |
+
</div>
|
| 216 |
+
"""
|
| 217 |
+
|
| 218 |
+
# --- Wrap in card and full HTML ---
|
| 219 |
+
content = f"""
|
| 220 |
+
<h2>{symbol} - Daily Data (OHLCV + Indicators + Patterns)</h2>
|
| 221 |
+
{html_card("TA-Lib Data", scrollable_html)}
|
| 222 |
+
"""
|
| 223 |
+
|
| 224 |
+
return wrap_html(content, title=f"{symbol} Daily Data")
|
| 225 |
+
|
| 226 |
+
except Exception as e:
|
| 227 |
+
return html_card("Error", str(e))
|
| 228 |
+
# qresult.py
|
| 229 |
+
import yfinance as yf
|
| 230 |
+
import pandas as pd
|
| 231 |
+
from common import make_table, wrap_html, format_large_number, html_error
|
| 232 |
+
from yf import qresult
|
| 233 |
+
def fetch_qresult(symbol):
|
| 234 |
+
"""
|
| 235 |
+
Fetch quarterly financials for a stock symbol and return HTML
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
try:
|
| 239 |
+
|
| 240 |
+
df = qresult(symbol)
|
| 241 |
+
|
| 242 |
+
if df.empty:
|
| 243 |
+
return wrap_html(f"<h1>No quarterly results available for {symbol}</h1>")
|
| 244 |
+
|
| 245 |
+
# Format numeric columns
|
| 246 |
+
df_formatted = df.copy()
|
| 247 |
+
for col in df_formatted.columns:
|
| 248 |
+
df_formatted[col] = df_formatted[col].apply(
|
| 249 |
+
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# Format index (dates)
|
| 253 |
+
df_formatted.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_formatted.index]
|
| 254 |
+
|
| 255 |
+
# Convert to pretty HTML table
|
| 256 |
+
table_html = make_table(df_formatted)
|
| 257 |
+
|
| 258 |
+
# Wrap into full HTML page
|
| 259 |
+
return wrap_html(table_html, title=f"{symbol} - Quarterly Results")
|
| 260 |
+
|
| 261 |
+
except Exception as e:
|
| 262 |
+
return wrap_html(html_error(f"Failed to fetch quarterly results: {e}"))
|
| 263 |
+
# result.py
|
| 264 |
+
import yfinance as yf
|
| 265 |
+
from common import make_table, wrap_html, format_large_number, html_error
|
| 266 |
+
from yf import result
|
| 267 |
+
def fetch_result(symbol):
|
| 268 |
+
|
| 269 |
+
try:
|
| 270 |
+
|
| 271 |
+
df = result(symbol)
|
| 272 |
+
|
| 273 |
+
if df.empty:
|
| 274 |
+
return wrap_html(f"<h1>No annual results available for {symbol}</h1>")
|
| 275 |
+
|
| 276 |
+
# Format numeric columns
|
| 277 |
+
df_formatted = df.copy()
|
| 278 |
+
for col in df_formatted.columns:
|
| 279 |
+
df_formatted[col] = df_formatted[col].apply(
|
| 280 |
+
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
df_formatted.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_formatted.index]
|
| 284 |
+
table_html = make_table(df_formatted)
|
| 285 |
+
|
| 286 |
+
return wrap_html(table_html, title=f"{symbol} - Annual Results")
|
| 287 |
+
|
| 288 |
+
except Exception as e:
|
| 289 |
+
return wrap_html(html_error(f"Failed to fetch annual results: {e}"))
|
| 290 |
+
|
| 291 |
+
# balance.py
|
| 292 |
+
import yfinance as yf
|
| 293 |
+
from common import make_table, wrap_html, format_large_number, html_error
|
| 294 |
+
from yf import balance
|
| 295 |
+
def fetch_balance(symbol):
|
| 296 |
+
|
| 297 |
+
try:
|
| 298 |
+
df = balance(symbol)
|
| 299 |
+
|
| 300 |
+
if df.empty:
|
| 301 |
+
return wrap_html(f"<h1>No balance sheet available for {symbol}</h1>")
|
| 302 |
+
|
| 303 |
+
df_formatted = df.copy()
|
| 304 |
+
for col in df_formatted.columns:
|
| 305 |
+
df_formatted[col] = df_formatted[col].apply(
|
| 306 |
+
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
df_formatted.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_formatted.index]
|
| 310 |
+
table_html = make_table(df_formatted)
|
| 311 |
+
|
| 312 |
+
return wrap_html(table_html, title=f"{symbol} - Balance Sheet")
|
| 313 |
+
|
| 314 |
+
except Exception as e:
|
| 315 |
+
return wrap_html(html_error(f"Failed to fetch balance sheet: {e}"))
|
| 316 |
+
# cashflow.py
|
| 317 |
+
import yfinance as yf
|
| 318 |
+
from common import make_table, wrap_html, format_large_number, html_error
|
| 319 |
+
from yf import cashflow
|
| 320 |
+
def fetch_cashflow(symbol):
|
| 321 |
+
|
| 322 |
+
try:
|
| 323 |
+
|
| 324 |
+
df = cashflow(symbol)
|
| 325 |
+
|
| 326 |
+
if df.empty:
|
| 327 |
+
return wrap_html(f"<h1>No cash flow data available for {symbol}</h1>")
|
| 328 |
+
|
| 329 |
+
df_formatted = df.copy()
|
| 330 |
+
for col in df_formatted.columns:
|
| 331 |
+
df_formatted[col] = df_formatted[col].apply(
|
| 332 |
+
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
df_formatted.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_formatted.index]
|
| 336 |
+
table_html = make_table(df_formatted)
|
| 337 |
+
|
| 338 |
+
return wrap_html(table_html, title=f"{symbol} - Cash Flow")
|
| 339 |
+
|
| 340 |
+
except Exception as e:
|
| 341 |
+
return wrap_html(html_error(f"Failed to fetch cash flow data: {e}"))
|
| 342 |
+
|
| 343 |
+
# dividend.py
|
| 344 |
+
import yfinance as yf
|
| 345 |
+
from common import make_table, wrap_html, format_large_number, html_error
|
| 346 |
+
from yf import dividend
|
| 347 |
+
def fetch_dividend(symbol):
|
| 348 |
+
|
| 349 |
+
try:
|
| 350 |
+
|
| 351 |
+
df = dividend(symbol)
|
| 352 |
+
|
| 353 |
+
if df.empty:
|
| 354 |
+
return wrap_html(f"<h1>No dividend history available for {symbol}</h1>")
|
| 355 |
+
|
| 356 |
+
df_formatted = df.copy()
|
| 357 |
+
for col in df_formatted.columns:
|
| 358 |
+
df_formatted[col] = df_formatted[col].apply(
|
| 359 |
+
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
df_formatted.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_formatted.index]
|
| 363 |
+
table_html = make_table(df_formatted)
|
| 364 |
+
|
| 365 |
+
return wrap_html(table_html, title=f"{symbol} - Dividend History")
|
| 366 |
+
|
| 367 |
+
except Exception as e:
|
| 368 |
+
return wrap_html(html_error(f"Failed to fetch dividend history: {e}"))
|
| 369 |
+
# split.py
|
| 370 |
+
import yfinance as yf
|
| 371 |
+
from common import make_table, wrap_html, format_large_number, html_error
|
| 372 |
+
from yf import split
|
| 373 |
+
def fetch_split(symbol):
|
| 374 |
+
|
| 375 |
+
try:
|
| 376 |
+
|
| 377 |
+
df = split(symbol)
|
| 378 |
+
|
| 379 |
+
if df.empty:
|
| 380 |
+
return wrap_html(f"<h1>No split history available for {symbol}</h1>")
|
| 381 |
+
|
| 382 |
+
df_formatted = df.copy()
|
| 383 |
+
for col in df_formatted.columns:
|
| 384 |
+
df_formatted[col] = df_formatted[col].apply(
|
| 385 |
+
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
df_formatted.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_formatted.index]
|
| 389 |
+
table_html = make_table(df_formatted)
|
| 390 |
+
|
| 391 |
+
return wrap_html(table_html, title=f"{symbol} - Split History")
|
| 392 |
+
|
| 393 |
+
except Exception as e:
|
| 394 |
+
return wrap_html(html_error(f"Failed to fetch split history: {e}"))
|
| 395 |
+
# other.py
|
| 396 |
+
import yfinance as yf
|
| 397 |
+
from common import make_table, wrap_html, format_large_number, html_error
|
| 398 |
+
|
| 399 |
+
def fetch_other(symbol):
|
| 400 |
+
yfsymbol = symbol + ".NS"
|
| 401 |
+
try:
|
| 402 |
+
ticker = yf.Ticker(yfsymbol)
|
| 403 |
+
df = ticker.earnings
|
| 404 |
+
|
| 405 |
+
if df.empty:
|
| 406 |
+
return wrap_html(f"<h1>No earnings data available for {symbol}</h1>")
|
| 407 |
+
|
| 408 |
+
df_formatted = df.copy()
|
| 409 |
+
for col in df_formatted.columns:
|
| 410 |
+
df_formatted[col] = df_formatted[col].apply(
|
| 411 |
+
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
df_formatted.index = [str(i) for i in df_formatted.index]
|
| 415 |
+
table_html = make_table(df_formatted)
|
| 416 |
+
|
| 417 |
+
return wrap_html(table_html, title=f"{symbol} - Earnings")
|
| 418 |
+
|
| 419 |
+
except Exception as e:
|
| 420 |
+
return wrap_html(html_error(f"Failed to fetch earnings data: {e}"))
|