Update indicators.py
Browse files- indicators.py +110 -186
indicators.py
CHANGED
|
@@ -1,215 +1,139 @@
|
|
| 1 |
-
#
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
# Try TA-Lib
|
| 6 |
try:
|
| 7 |
import talib
|
| 8 |
-
|
| 9 |
except:
|
| 10 |
-
|
| 11 |
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
#
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
| 24 |
|
| 25 |
-
def atr(high, low, close, period=14):
|
| 26 |
-
if TALIB and hasattr(talib, "ATR"):
|
| 27 |
-
return talib.ATR(high, low, close, timeperiod=period)
|
| 28 |
-
else:
|
| 29 |
-
tr1 = high - low
|
| 30 |
-
tr2 = (high - close.shift()).abs()
|
| 31 |
-
tr3 = (low - close.shift()).abs()
|
| 32 |
-
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
|
| 33 |
-
return tr.rolling(period).mean()
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# ============================================================
|
| 37 |
-
# SUPERTREND — TradingView Perfect Replication
|
| 38 |
-
# ============================================================
|
| 39 |
-
|
| 40 |
-
def supertrend(df, period=10, multiplier=3):
|
| 41 |
-
"""
|
| 42 |
-
Returns:
|
| 43 |
-
ST: SuperTrend line
|
| 44 |
-
DIR: Trend direction (True = Uptrend, False = Downtrend)
|
| 45 |
-
"""
|
| 46 |
-
high = df['High']
|
| 47 |
-
low = df['Low']
|
| 48 |
-
close = df['Close']
|
| 49 |
-
|
| 50 |
-
# ATR
|
| 51 |
-
atr_val = atr(high, low, close, period)
|
| 52 |
-
|
| 53 |
-
# Basic bands
|
| 54 |
-
hl2 = (high + low) / 2
|
| 55 |
-
upperband = hl2 + multiplier * atr_val
|
| 56 |
-
lowerband = hl2 - multiplier * atr_val
|
| 57 |
-
|
| 58 |
-
final_upper = upperband.copy()
|
| 59 |
-
final_lower = lowerband.copy()
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
else:
|
| 72 |
-
final_lower.iloc[i] = final_lower.iloc[i - 1]
|
| 73 |
|
| 74 |
-
# Supertrend
|
| 75 |
st = pd.Series(index=df.index)
|
| 76 |
-
|
| 77 |
|
| 78 |
-
for i in range(
|
| 79 |
-
if
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
dir_up.iloc[i] = False
|
| 83 |
else:
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
"""
|
| 109 |
-
Returns ZigZag turning points based on percentage move.
|
| 110 |
-
"""
|
| 111 |
-
zz = pd.Series(index=series.index, dtype=float)
|
| 112 |
-
last_pivot_price = series.iloc[0]
|
| 113 |
-
last_pivot_idx = series.index[0]
|
| 114 |
-
trend = 0 # +1 up, -1 down
|
| 115 |
-
|
| 116 |
-
for i in range(1, len(series)):
|
| 117 |
-
change = (series.iloc[i] - last_pivot_price) / last_pivot_price * 100
|
| 118 |
-
|
| 119 |
-
if trend >= 0 and change <= -pct:
|
| 120 |
-
zz.iloc[i] = series.iloc[i]
|
| 121 |
-
last_pivot_price = series.iloc[i]
|
| 122 |
-
trend = -1
|
| 123 |
-
|
| 124 |
-
elif trend <= 0 and change >= pct:
|
| 125 |
-
zz.iloc[i] = series.iloc[i]
|
| 126 |
-
last_pivot_price = series.iloc[i]
|
| 127 |
-
trend = +1
|
| 128 |
-
|
| 129 |
-
return zz
|
| 130 |
|
|
|
|
| 131 |
|
| 132 |
-
# ============================================================
|
| 133 |
-
# SWING HIGH / SWING LOW
|
| 134 |
-
# ============================================================
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
"""
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
idx = df.index
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
-
|
| 149 |
|
| 150 |
-
for i in range(half, len(df) - half):
|
| 151 |
-
segment_high = highs[i - half: i + half + 1]
|
| 152 |
-
segment_low = lows[i - half: i + half + 1]
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
return
|
| 161 |
|
| 162 |
|
| 163 |
-
#
|
| 164 |
-
#
|
| 165 |
-
#
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
delta = series.diff()
|
| 172 |
-
up = delta.clip(lower=0)
|
| 173 |
-
down = -delta.clip(upper=0)
|
| 174 |
-
ema_up = up.ewm(span=period).mean()
|
| 175 |
-
ema_down = down.ewm(span=period).mean()
|
| 176 |
-
rs = ema_up / ema_down
|
| 177 |
-
return 100 - (100 / (1 + rs))
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
# ============================================================
|
| 181 |
-
# MACD FALLBACK
|
| 182 |
-
# ============================================================
|
| 183 |
-
|
| 184 |
-
def macd(series, fast=12, slow=26, signal=9):
|
| 185 |
-
if TALIB and hasattr(talib, "MACD"):
|
| 186 |
-
macd_line, macd_signal, macd_hist = talib.MACD(series, fastperiod=fast, slowperiod=slow, signalperiod=signal)
|
| 187 |
-
return macd_line, macd_signal, macd_hist
|
| 188 |
-
else:
|
| 189 |
-
ema_fast = ema(series, fast)
|
| 190 |
-
ema_slow = ema(series, slow)
|
| 191 |
-
macd_line = ema_fast - ema_slow
|
| 192 |
-
macd_signal = ema(macd_line, signal)
|
| 193 |
-
macd_hist = macd_line - macd_signal
|
| 194 |
-
return macd_line, macd_signal, macd_hist
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
# ============================================================
|
| 198 |
-
# STOCHASTIC FALLBACK
|
| 199 |
-
# ============================================================
|
| 200 |
-
|
| 201 |
-
def stochastic(df, k_period=14, d_period=3):
|
| 202 |
-
if TALIB and hasattr(talib, "STOCH"):
|
| 203 |
-
k, d = talib.STOCH(
|
| 204 |
-
df['High'], df['Low'], df['Close'],
|
| 205 |
-
fastk_period=k_period,
|
| 206 |
-
slowk_period=d_period, slowk_matype=0,
|
| 207 |
-
slowd_period=d_period, slowd_matype=0
|
| 208 |
-
)
|
| 209 |
-
return k, d
|
| 210 |
-
else:
|
| 211 |
-
low_min = df['Low'].rolling(k_period).min()
|
| 212 |
-
high_max = df['High'].rolling(k_period).max()
|
| 213 |
-
k = (df['Close'] - low_min) * 100 / (high_max - low_min)
|
| 214 |
-
d = k.rolling(d_period).mean()
|
| 215 |
-
return k, d
|
|
|
|
| 1 |
+
# indicator.py
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
# Try TA-Lib
|
| 6 |
try:
|
| 7 |
import talib
|
| 8 |
+
TALIB_AVAILABLE = True
|
| 9 |
except:
|
| 10 |
+
TALIB_AVAILABLE = False
|
| 11 |
|
| 12 |
|
| 13 |
+
# ==============================
|
| 14 |
+
# MACD
|
| 15 |
+
# ==============================
|
| 16 |
+
def calc_macd(df):
|
| 17 |
+
if TALIB_AVAILABLE:
|
| 18 |
+
macd, signal, hist = talib.MACD(df["Close"])
|
| 19 |
+
else:
|
| 20 |
+
ema12 = df["Close"].ewm(span=12).mean()
|
| 21 |
+
ema26 = df["Close"].ewm(span=26).mean()
|
| 22 |
+
macd = ema12 - ema26
|
| 23 |
+
signal = macd.ewm(span=9).mean()
|
| 24 |
+
hist = macd - signal
|
| 25 |
+
|
| 26 |
+
return pd.DataFrame({
|
| 27 |
+
"MACD": macd,
|
| 28 |
+
"Signal": signal,
|
| 29 |
+
"Histogram": hist
|
| 30 |
+
})
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# ==============================
|
| 34 |
+
# RSI
|
| 35 |
+
# ==============================
|
| 36 |
+
def calc_rsi(df):
|
| 37 |
+
if TALIB_AVAILABLE:
|
| 38 |
+
rsi = talib.RSI(df["Close"], timeperiod=14)
|
| 39 |
+
else:
|
| 40 |
+
delta = df["Close"].diff()
|
| 41 |
+
gain = (delta.where(delta > 0, 0)).rolling(14).mean()
|
| 42 |
+
loss = (-delta.where(delta < 0, 0)).rolling(14).mean()
|
| 43 |
+
rs = gain / loss
|
| 44 |
+
rsi = 100 - (100 / (1 + rs))
|
| 45 |
|
| 46 |
+
return pd.DataFrame({"RSI": rsi})
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# ==============================
|
| 50 |
+
# Supertrend (Custom)
|
| 51 |
+
# ==============================
|
| 52 |
+
def calc_supertrend(df, period=10, multiplier=3):
|
| 53 |
+
hl2 = (df["High"] + df["Low"]) / 2
|
| 54 |
+
tr1 = df["High"] - df["Low"]
|
| 55 |
+
tr2 = abs(df["High"] - df["Close"].shift())
|
| 56 |
+
tr3 = abs(df["Low"] - df["Close"].shift())
|
| 57 |
+
tr = tr1.combine(tr2, max).combine(tr3, max)
|
| 58 |
|
| 59 |
+
atr = tr.rolling(period).mean()
|
| 60 |
+
upperband = hl2 + multiplier * atr
|
| 61 |
+
lowerband = hl2 - multiplier * atr
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
st = pd.Series(index=df.index)
|
| 64 |
+
direction = pd.Series(index=df.index)
|
| 65 |
|
| 66 |
+
for i in range(len(df)):
|
| 67 |
+
if i == 0:
|
| 68 |
+
st.iloc[i] = upperband.iloc[i]
|
| 69 |
+
direction.iloc[i] = 1
|
|
|
|
| 70 |
else:
|
| 71 |
+
if df["Close"].iloc[i] > st.iloc[i - 1]:
|
| 72 |
+
st.iloc[i] = lowerband.iloc[i]
|
| 73 |
+
direction.iloc[i] = 1
|
| 74 |
+
else:
|
| 75 |
+
st.iloc[i] = upperband.iloc[i]
|
| 76 |
+
direction.iloc[i] = -1
|
| 77 |
+
|
| 78 |
+
return pd.DataFrame({
|
| 79 |
+
"Supertrend": st,
|
| 80 |
+
"Direction": direction
|
| 81 |
+
})
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# ==============================
|
| 85 |
+
# Stochastic
|
| 86 |
+
# ==============================
|
| 87 |
+
def calc_stochastic(df):
|
| 88 |
+
if TALIB_AVAILABLE:
|
| 89 |
+
slowk, slowd = talib.STOCH(df["High"], df["Low"], df["Close"])
|
| 90 |
+
else:
|
| 91 |
+
low14 = df["Low"].rolling(14).min()
|
| 92 |
+
high14 = df["High"].rolling(14).max()
|
| 93 |
+
slowk = (df["Close"] - low14) * 100 / (high14 - low14)
|
| 94 |
+
slowd = slowk.rolling(3).mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
return pd.DataFrame({"STOCH_K": slowk, "STOCH_D": slowd})
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
# ==============================
|
| 100 |
+
# Keltner Channel
|
| 101 |
+
# ==============================
|
| 102 |
+
def calc_keltner(df):
|
| 103 |
+
typical = (df["High"] + df["Low"] + df["Close"]) / 3
|
| 104 |
+
ema = typical.ewm(span=20).mean()
|
| 105 |
+
atr = (df["High"] - df["Low"]).rolling(20).mean()
|
|
|
|
| 106 |
|
| 107 |
+
upper = ema + 2 * atr
|
| 108 |
+
lower = ema - 2 * atr
|
| 109 |
|
| 110 |
+
return pd.DataFrame({"KC_UP": upper, "KC_MID": ema, "KC_LOW": lower})
|
| 111 |
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
# ==============================
|
| 114 |
+
# ZigZag (simplified)
|
| 115 |
+
# ==============================
|
| 116 |
+
def calc_zigzag(df, pct=3):
|
| 117 |
+
zigzag = [np.nan] * len(df)
|
| 118 |
+
last_pivot = df["Close"].iloc[0]
|
| 119 |
|
| 120 |
+
for i in range(1, len(df)):
|
| 121 |
+
change = (df["Close"].iloc[i] - last_pivot) / last_pivot * 100
|
| 122 |
+
if abs(change) >= pct:
|
| 123 |
+
zigzag[i] = df["Close"].iloc[i]
|
| 124 |
+
last_pivot = df["Close"].iloc[i]
|
| 125 |
|
| 126 |
+
return pd.DataFrame({"ZIGZAG": zigzag})
|
| 127 |
|
| 128 |
|
| 129 |
+
# ==============================
|
| 130 |
+
# Swing High / Low
|
| 131 |
+
# ==============================
|
| 132 |
+
def calc_swings(df, period=5):
|
| 133 |
+
swing_high = df["High"].rolling(period).max()
|
| 134 |
+
swing_low = df["Low"].rolling(period).min()
|
| 135 |
|
| 136 |
+
return pd.DataFrame({
|
| 137 |
+
"SWING_HIGH": swing_high,
|
| 138 |
+
"SWING_LOW": swing_low
|
| 139 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|