import yfinance as yf import pandas as pd import io import requests from datetime import datetime, timedelta from ta_indi_pat import talib_df # use the combined talib_df function from common import html_card, wrap_html # ----------------------------- # Global Variables # ----------------------------- nse_del_key_map = { 'Symbol': "Symbol", 'Series': "Series", 'Date': 'Date', 'Prev Close': 'Preclose', 'Open Price': 'Open', 'High Price': 'High', 'Low Price': 'Low', 'Last Price': 'Last', 'Close Price': 'Close', 'Average Price': 'AvgPrice', 'Total Traded Quantity': 'Volume', 'Turnover ₹': 'Turnover', 'No. of Trades': "Trades", 'Deliverable Qty': "Delivery", '% Dly Qt to Traded Qty': "Del%" } # ----------------------------- # Data Fetching Functions (NSE) # ----------------------------- def url_nse_del(symbol, start_date, end_date): base_url = "https://www.nseindia.com/api/historicalOR/generateSecurityWiseHistoricalData" start_date_str = start_date.strftime("%d-%m-%Y") end_date_str = end_date.strftime("%d-%m-%Y") url = f"{base_url}?from={start_date_str}&to={end_date_str}&symbol={symbol.split('.')[0]}&type=priceVolumeDeliverable&series=ALL&csv=true" return url def to_numeric_safe(series): series = series.replace('-', 0) series = series.fillna(0) series = series.astype(str).str.replace(',', '') return pd.to_numeric(series, errors='coerce').fillna(0) def nse_del(symbol, start_date_str=None, end_date_str=None): # Default end date is today end_date = datetime.now() if end_date_str: try: end_date = datetime.strptime(end_date_str, "%Y-%m-%d") except ValueError: print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.") end_date = datetime.now() # Default start date is one year prior to end_date start_date = end_date - timedelta(days=365) if start_date_str: try: start_date = datetime.strptime(start_date_str, "%Y-%m-%d") except ValueError: print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.") start_date = end_date - timedelta(days=365) # Ensure start_date is not after end_date if start_date > end_date: print("Warning: Start date is after end date. Swapping dates.") start_date, end_date = end_date, start_date url = url_nse_del(symbol, start_date, end_date) headers = { 'User-Agent': 'Mozilla/5.0' } try: response = requests.get(url, headers=headers) response.raise_for_status() if response.content: df = pd.read_csv(io.StringIO(response.content.decode('utf-8'))).round(2) df.columns = df.columns.str.strip() df.rename(columns=nse_del_key_map, inplace=True) # Capitalize the first letter of ALL column names after renaming df.columns = [col.capitalize() for col in df.columns] # Remove 'Symbol', 'Series', 'Avgprice', and 'Last' columns (now capitalized) df.drop(columns=['Symbol','Series','Avgprice','Last'], errors='ignore', inplace=True) # Convert 'Date' column to datetime objects df['Date'] = pd.to_datetime(df['Date'], format='%d-%b-%Y').dt.strftime('%Y-%m-%d') numeric_cols = ['Close', 'Preclose', 'Open', 'High', 'Low', 'Volume', 'Delivery', 'Turnover', 'Trades'] # Ensure numeric_cols are capitalized before checking and conversion numeric_cols_capitalized = [col.capitalize() for col in numeric_cols] for col in numeric_cols_capitalized: if col in df.columns: df[col] = to_numeric_safe(df[col]) else: df[col] = 0 return df except Exception as e: print(f"Error fetching data from NSE for {symbol}: {e}") return None def daily(symbol,source="yfinace"): if source=="yfinance": df = yf.download(symbol + ".NS", period="1y", interval="1d").round(2) if df.empty: return html_card("Error", f"No daily data found for {symbol}") # --- Standardize columns --- df.columns = ["Close", "High", "Low", "Open", "Volume"] df.reset_index(inplace=True) # make Date a column if source=="NSE": df=nse_del(symbol) return df def fetch_daily(symbol, source,max_rows=200): """ Fetch daily OHLCV data, calculate TA-Lib indicators + patterns, return a single scrollable HTML table. """ try: # --- Fetch daily data --- df=daily(symbol,source) # --- Limit rows for display --- df_display = df.head(max_rows) # --- Generate combined TA-Lib DataFrame --- combined_df = talib_df(df_display) # --- Convert to HTML table --- table_html = combined_df.to_html( classes="table table-striped table-bordered", index=False ) # --- Wrap in scrollable div --- scrollable_html = f"""