File size: 6,204 Bytes
44b73f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
Smoke test for zero-shot inference pipeline

Tests:
1. Data loading and preparation
2. Chronos 2 model loading
3. Inference on single border (7 days)
4. Output validation
5. Performance metrics
"""

import sys
from pathlib import Path

# Add src to path
sys.path.insert(0, str(Path(__file__).parent.parent / 'src'))

from inference.data_fetcher import DataFetcher
from inference.chronos_pipeline import ChronosForecaster
from datetime import datetime, timedelta
import torch
import pandas as pd

def main():
    print("="*60)
    print("FBMC Chronos 2 Zero-Shot Inference - Smoke Test")
    print("="*60)

    # Step 1: Check environment
    print("\n[1] Checking environment...")
    print(f"PyTorch version: {torch.__version__}")
    print(f"CUDA available: {torch.cuda.is_available()}")
    if torch.cuda.is_available():
        print(f"GPU: {torch.cuda.get_device_name(0)}")
        print(f"VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
    else:
        print("Running on CPU (inference will be slower)")

    # Step 2: Initialize DataFetcher
    print("\n[2] Initializing DataFetcher...")
    fetcher = DataFetcher(
        use_local=True,  # Use local files for testing
        context_length=512  # Use 512 hours context
    )

    # Step 3: Load data
    print("\n[3] Loading unified features...")
    fetcher.load_data()

    # Get available date range
    min_date, max_date = fetcher.get_available_dates()
    print(f"Available data: {min_date} to {max_date}")

    # Select forecast date (use last month as test)
    forecast_date = max_date - timedelta(days=30)
    print(f"Test forecast date: {forecast_date}")

    # Step 4: Prepare inference data (single border, 7 days)
    print("\n[4] Preparing inference data (1 border, 7 days)...")
    test_border = fetcher.target_borders[0]  # Use first border
    print(f"Test border: {test_border}")

    context_df, future_df = fetcher.prepare_inference_data(
        forecast_date=forecast_date,
        prediction_length=168,  # 7 days
        borders=[test_border]
    )

    print(f"Context shape: {context_df.shape}")
    print(f"Future shape: {future_df.shape}")

    # Validate data
    print("\n[5] Validating prepared data...")
    assert 'timestamp' in context_df.columns, "Missing timestamp column"
    assert 'border' in context_df.columns, "Missing border column"
    assert 'target' in context_df.columns, "Missing target column"
    assert len(context_df) > 0, "Empty context data"
    assert len(future_df) > 0, "Empty future data"
    print("[+] Data validation passed!")

    # Check for NaN values
    context_nulls = context_df.isnull().sum().sum()
    future_nulls = future_df.isnull().sum().sum()
    print(f"Context NaN count: {context_nulls}")
    print(f"Future NaN count: {future_nulls}")

    if context_nulls > 0 or future_nulls > 0:
        print("[!] Warning: Data contains NaN values (will be handled by model)")

    # Step 6: Initialize Chronos 2 forecaster
    print("\n[6] Initializing Chronos 2 forecaster...")
    forecaster = ChronosForecaster(
        model_name="amazon/chronos-2-large",
        device="auto"  # Will use GPU if available
    )

    # Step 7: Load model
    print("\n[7] Loading Chronos 2 Large model...")
    print("(This may take a few minutes on first load)")
    forecaster.load_model()
    print("[+] Model loaded successfully!")

    # Step 8: Run inference
    print("\n[8] Running zero-shot inference...")
    print(f"Forecasting {test_border} for 7 days (168 hours)")

    forecasts = forecaster.predict_single_border(
        border=test_border,
        context_df=context_df,
        future_df=future_df,
        prediction_length=168,
        num_samples=100  # 100 samples for probabilistic forecast
    )

    print(f"[+] Inference complete! Forecast shape: {forecasts.shape}")

    # Step 9: Validate forecasts
    print("\n[9] Validating forecasts...")
    assert len(forecasts) > 0, "Empty forecasts"
    assert 'timestamp' in forecasts.columns or forecasts.index.name == 'timestamp', "Missing timestamp"

    # Check for reasonable values
    if 'mean' in forecasts.columns:
        mean_forecast = forecasts['mean']
        print(f"Forecast statistics:")
        print(f"  Mean: {mean_forecast.mean():.2f} MW")
        print(f"  Min: {mean_forecast.min():.2f} MW")
        print(f"  Max: {mean_forecast.max():.2f} MW")
        print(f"  Std: {mean_forecast.std():.2f} MW")

        # Sanity check: values should be reasonable for power capacity
        assert mean_forecast.min() >= 0, "Negative forecasts detected"
        assert mean_forecast.max() < 20000, "Unreasonably high forecasts"
        print("[+] Forecast validation passed!")

    # Step 10: Benchmark performance
    print("\n[10] Benchmarking inference performance...")
    metrics = forecaster.benchmark_inference(
        context_df=context_df,
        future_df=future_df,
        prediction_length=168
    )

    print(f"Performance metrics:")
    for key, value in metrics.items():
        print(f"  {key}: {value}")

    # Check if we meet the 5-minute target (for 14 days)
    # Scale to 14-day estimate
    estimated_14d_time = metrics['inference_time_sec'] * (336 / 168)
    print(f"\nEstimated time for 14-day forecast: {estimated_14d_time:.1f}s ({estimated_14d_time/60:.1f} min)")

    if estimated_14d_time < 300:  # 5 minutes
        print("[+] Performance target met! (<5 min for 14 days)")
    else:
        print("[!] Warning: May not meet 5-minute target for 14 days")

    # Step 11: Save test forecasts
    print("\n[11] Saving test forecasts...")
    output_path = "data/evaluation/smoke_test_forecast.parquet"
    forecaster.save_forecasts(forecasts, output_path)
    print(f"[+] Saved to: {output_path}")

    # Summary
    print("\n" + "="*60)
    print("SMOKE TEST SUMMARY")
    print("="*60)
    print("[+] All tests passed!")
    print(f"[+] Border: {test_border}")
    print(f"[+] Forecast length: 168 hours (7 days)")
    print(f"[+] Inference time: {metrics['inference_time_sec']:.1f}s")
    print(f"[+] Output shape: {forecasts.shape}")
    print("\n[+] Ready for full inference run!")
    print("="*60)

if __name__ == "__main__":
    main()