Spaces:
Sleeping
Sleeping
File size: 14,283 Bytes
330e408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
"""Process October 2025 raw data into features for dataset extension.
This script processes the October 2025 raw data (downloaded Nov 13) and generates
feature files matching the 24-month dataset schema:
- Weather features: 375 features
- ENTSO-E features: ~1,863 features
- JAO features: 276 features (if October data exists)
Output files will be saved to data/processed/ with "_october" suffix.
Author: Claude
Date: 2025-11-14
"""
from pathlib import Path
import polars as pl
import sys
# Add src to path for imports
sys.path.append(str(Path(__file__).parent / "src"))
from feature_engineering.engineer_weather_features import (
engineer_grid_level_features,
engineer_temporal_lags,
engineer_derived_features
)
from feature_engineering.engineer_entsoe_features import (
engineer_generation_features,
engineer_demand_features,
engineer_price_features,
engineer_hydro_storage_features,
engineer_pumped_storage_features,
engineer_load_forecast_features,
engineer_transmission_outage_features
)
def process_october_weather() -> pl.DataFrame:
"""Process October weather data into 375 features."""
print("\n" + "=" * 80)
print("PROCESSING OCTOBER WEATHER DATA")
print("=" * 80)
raw_file = Path("data/raw/weather_october_2025.parquet")
if not raw_file.exists():
raise FileNotFoundError(f"Missing: {raw_file}")
# Load October weather data
weather_df = pl.read_parquet(raw_file)
print(f"\nLoaded weather data: {weather_df.shape}")
print(f"Date range: {weather_df['timestamp'].min()} to {weather_df['timestamp'].max()}")
# Engineer features using existing modules
features = engineer_grid_level_features(weather_df)
features = engineer_temporal_lags(features)
features = engineer_derived_features(features)
# Save to processed directory
output_file = Path("data/processed/features_weather_october.parquet")
features.write_parquet(output_file)
print(f"\n[OK] Weather features saved: {output_file}")
print(f" Shape: {features.shape}")
print(f" Features: {len(features.columns) - 1} (+ timestamp)")
return features
def process_october_entsoe() -> pl.DataFrame:
"""Process October ENTSO-E data into ~1,863 features."""
print("\n" + "=" * 80)
print("PROCESSING OCTOBER ENTSO-E DATA")
print("=" * 80)
# Check which ENTSO-E files exist
raw_dir = Path("data/raw")
processed_dir = Path("data/processed")
required_files = {
'generation': raw_dir / "entsoe_generation_october_2025.parquet",
'demand': raw_dir / "entsoe_demand_october_2025.parquet",
'prices': raw_dir / "entsoe_prices_october_2025.parquet",
'hydro_storage': raw_dir / "entsoe_hydro_storage_october_2025.parquet",
'pumped_storage': raw_dir / "entsoe_pumped_storage_october_2025.parquet",
'load_forecast': raw_dir / "entsoe_load_forecast_october_2025.parquet",
'transmission_outages': raw_dir / "entsoe_transmission_outages_october_2025.parquet"
}
# Load CNEC master list (required for transmission outage features)
cnec_master_path = processed_dir / "cnecs_master_176.csv"
if not cnec_master_path.exists():
raise FileNotFoundError(f"Missing CNEC master list: {cnec_master_path}")
cnec_master_df = pl.read_csv(cnec_master_path)
print(f"\nLoaded CNEC master list: {cnec_master_df.shape}")
# Verify all files exist
for name, file_path in required_files.items():
if not file_path.exists():
print(f"WARNING: Missing {name} file: {file_path}")
# Load all datasets
print("\nLoading ENTSO-E datasets...")
generation_df = pl.read_parquet(required_files['generation'])
demand_df = pl.read_parquet(required_files['demand'])
prices_df = pl.read_parquet(required_files['prices'])
hydro_storage_df = pl.read_parquet(required_files['hydro_storage'])
pumped_storage_df = pl.read_parquet(required_files['pumped_storage'])
load_forecast_df = pl.read_parquet(required_files['load_forecast'])
transmission_outages_df = pl.read_parquet(required_files['transmission_outages'])
print(f" Generation: {generation_df.shape}")
print(f" Demand: {demand_df.shape}")
print(f" Prices: {prices_df.shape}")
print(f" Hydro storage: {hydro_storage_df.shape}")
print(f" Pumped storage: {pumped_storage_df.shape}")
print(f" Load forecast: {load_forecast_df.shape}")
print(f" Transmission outages: {transmission_outages_df.shape}")
# Engineer features for each category
print("\nEngineering ENTSO-E features...")
# Generation features (~228 features)
gen_features = engineer_generation_features(generation_df)
# Demand features (24 features)
demand_features = engineer_demand_features(demand_df)
# Price features (24 features)
price_features = engineer_price_features(prices_df)
# Hydro storage features (12 features)
hydro_features = engineer_hydro_storage_features(hydro_storage_df)
# Pumped storage features (10 features)
pumped_features = engineer_pumped_storage_features(pumped_storage_df)
# Load forecast features (12 features)
load_forecast_features = engineer_load_forecast_features(load_forecast_df)
# Transmission outage features (176 features - ALL CNECs)
# Create hourly range for October (Oct 1-14, 2025)
import datetime
october_start = datetime.datetime(2025, 10, 1, 0, 0)
october_end = datetime.datetime(2025, 10, 14, 23, 0)
hourly_range = pl.DataFrame({
'timestamp': pl.datetime_range(
october_start,
october_end,
interval='1h',
eager=True
)
})
transmission_features = engineer_transmission_outage_features(
transmission_outages_df,
cnec_master_df,
hourly_range
)
# Merge all features
print("\nMerging all ENTSO-E features...")
features = gen_features
# Fix timezone and precision issues - ensure all timestamps are timezone-naive and nanosecond precision
features = features.with_columns([
pl.col('timestamp').dt.replace_time_zone(None).dt.cast_time_unit('ns').alias('timestamp')
])
for feat_df, name in [
(demand_features, "demand"),
(price_features, "prices"),
(hydro_features, "hydro_storage"),
(pumped_features, "pumped_storage"),
(load_forecast_features, "load_forecast"),
(transmission_features, "transmission_outages")
]:
# Ensure timezone and precision consistency
if 'timestamp' in feat_df.columns:
feat_df = feat_df.with_columns([
pl.col('timestamp').dt.replace_time_zone(None).dt.cast_time_unit('ns').alias('timestamp')
])
features = features.join(feat_df, on='timestamp', how='left', coalesce=True)
print(f" Added {name}: {len(feat_df.columns) - 1} features")
# Resample to hourly (some datasets have sub-hourly data)
print("\nResampling to hourly...")
features = features.with_columns([
pl.col('timestamp').dt.truncate('1h').alias('timestamp')
])
# Group by hour and take mean (for any sub-hourly values)
agg_exprs = [pl.col(c).mean().alias(c) for c in features.columns if c != 'timestamp']
features = features.group_by('timestamp').agg(agg_exprs).sort('timestamp')
print(f" Resampled to {len(features)} hourly rows")
# Ensure complete 336-hour range (Oct 1-14) - fill missing hours with forward-fill
october_start = datetime.datetime(2025, 10, 1, 0, 0)
october_end = datetime.datetime(2025, 10, 14, 23, 0)
complete_range = pl.DataFrame({
'timestamp': pl.datetime_range(
october_start,
october_end,
interval='1h',
eager=True
)
})
# Cast complete_range timestamp to match features precision
complete_range = complete_range.with_columns([
pl.col('timestamp').dt.cast_time_unit('ns').alias('timestamp')
])
# Join to complete range and forward-fill missing values
features = complete_range.join(features, on='timestamp', how='left')
# Forward-fill missing values
fill_exprs = []
for col in features.columns:
if col != 'timestamp':
fill_exprs.append(pl.col(col).forward_fill().alias(col))
if fill_exprs:
features = features.with_columns(fill_exprs)
missing_count = 336 - len(features.filter(pl.all_horizontal(pl.all().is_not_null())))
if missing_count > 0:
print(f" Forward-filled {missing_count} missing hours")
print(f" Final shape: {len(features)} hourly rows (Oct 1-14)")
# Save to processed directory
output_file = Path("data/processed/features_entsoe_october.parquet")
features.write_parquet(output_file)
print(f"\n[OK] ENTSO-E features saved: {output_file}")
print(f" Shape: {features.shape}")
print(f" Features: {len(features.columns) - 1} (+ timestamp)")
return features
def process_october_jao() -> pl.DataFrame | None:
"""Process October JAO data into 276 features (if data exists)."""
print("\n" + "=" * 80)
print("PROCESSING OCTOBER JAO DATA")
print("=" * 80)
# Check if October JAO data exists
raw_file = Path("data/raw/jao_october_2025.parquet")
if not raw_file.exists():
print(f"\nINFO: No October JAO data found at {raw_file}")
print("This is expected - JAO features may be historical only.")
print("Skipping JAO feature engineering for October.")
return None
# If data exists, process it
from feature_engineering.engineer_jao_features import (
engineer_jao_features_all
)
jao_df = pl.read_parquet(raw_file)
print(f"\nLoaded JAO data: {jao_df.shape}")
features = engineer_jao_features_all(jao_df)
# Save to processed directory
output_file = Path("data/processed/features_jao_october.parquet")
features.write_parquet(output_file)
print(f"\n[OK] JAO features saved: {output_file}")
print(f" Shape: {features.shape}")
return features
def validate_october_features():
"""Validate October feature files match expected schema."""
print("\n" + "=" * 80)
print("VALIDATING OCTOBER FEATURES")
print("=" * 80)
# Load October feature files
weather_file = Path("data/processed/features_weather_october.parquet")
entsoe_file = Path("data/processed/features_entsoe_october.parquet")
jao_file = Path("data/processed/features_jao_october.parquet")
weather_df = pl.read_parquet(weather_file)
entsoe_df = pl.read_parquet(entsoe_file)
print(f"\nWeather features: {weather_df.shape}")
print(f" Rows (expected 336): {len(weather_df)}")
print(f" Features (expected 375): {len(weather_df.columns) - 1}")
print(f"\nENTSO-E features: {entsoe_df.shape}")
print(f" Rows (expected 336): {len(entsoe_df)}")
print(f" Features (expected ~1,863): {len(entsoe_df.columns) - 1}")
if jao_file.exists():
jao_df = pl.read_parquet(jao_file)
print(f"\nJAO features: {jao_df.shape}")
print(f" Rows (expected 336): {len(jao_df)}")
print(f" Features (expected 276): {len(jao_df.columns) - 1}")
else:
print("\nJAO features: Not generated (no October JAO data)")
# Validate row count (14 days × 24 hours = 336)
expected_rows = 336
issues = []
if len(weather_df) != expected_rows:
issues.append(f"Weather rows: {len(weather_df)} (expected {expected_rows})")
if len(entsoe_df) != expected_rows:
issues.append(f"ENTSO-E rows: {len(entsoe_df)} (expected {expected_rows})")
# Validate date range (Oct 1-14, 2025)
weather_start = weather_df['timestamp'].min()
weather_end = weather_df['timestamp'].max()
entsoe_start = entsoe_df['timestamp'].min()
entsoe_end = entsoe_df['timestamp'].max()
print(f"\nDate ranges:")
print(f" Weather: {weather_start} to {weather_end}")
print(f" ENTSO-E: {entsoe_start} to {entsoe_end}")
# Check for null values
weather_nulls = weather_df.null_count().sum_horizontal().to_list()[0]
entsoe_nulls = entsoe_df.null_count().sum_horizontal().to_list()[0]
print(f"\nNull value counts:")
print(f" Weather: {weather_nulls} nulls")
print(f" ENTSO-E: {entsoe_nulls} nulls")
# Report validation results
if issues:
print("\n[WARNING] Validation issues found:")
for issue in issues:
print(f" - {issue}")
else:
print("\n[OK] All validation checks passed!")
return len(issues) == 0
def main():
"""Main execution: Process all October data."""
print("\n" + "=" * 80)
print("OCTOBER 2025 FEATURE ENGINEERING")
print("Processing raw data into features for dataset extension")
print("=" * 80)
try:
# Process each feature category
weather_features = process_october_weather()
entsoe_features = process_october_entsoe()
jao_features = process_october_jao() # May return None
# Validate features
validation_passed = validate_october_features()
if validation_passed:
print("\n" + "=" * 80)
print("SUCCESS: October feature engineering complete!")
print("=" * 80)
print("\nGenerated files:")
print(" - data/processed/features_weather_october.parquet")
print(" - data/processed/features_entsoe_october.parquet")
if jao_features is not None:
print(" - data/processed/features_jao_october.parquet")
print("\nNext steps:")
print(" 1. Merge October features into unified dataset")
print(" 2. Append to 24-month dataset (17,544 -> 17,880 rows)")
print(" 3. Upload extended dataset to HuggingFace")
else:
print("\n[ERROR] Validation failed - please review issues above")
sys.exit(1)
except Exception as e:
# Avoid Unicode errors on Windows console
error_msg = str(e).encode('ascii', 'replace').decode('ascii')
print(f"\n[ERROR] Feature engineering failed: {error_msg}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()
|