Spaces:
Sleeping
Sleeping
Evgueni Poloukarov
Claude
commited on
Commit
·
2d135b5
1
Parent(s):
dc9b9db
fix: implement sub-batching to avoid CUDA OOM on T4 GPU
Browse filesProblem:
- Batch of 38 borders requires 762 MB GPU memory
- T4 GPU has only 534 MB free after model load (14.22 GB used)
- CUDA out of memory error
Solution:
- Process borders in sub-batches of 10 (4 sub-batches total)
- Clear GPU cache between sub-batches
- Still much faster than sequential (4x10 vs 38x1)
Implementation:
- Split contexts into sub-batches of SUB_BATCH_SIZE=10
- Process each sub-batch independently
- Store all forecasts and process quantiles after
- Expected time: ~8-10 seconds (vs 60 min sequential)
This balances GPU memory constraints with batch processing speedup.
Co-Authored-By: Claude <[email protected]>
- src/forecasting/chronos_inference.py +113 -77
src/forecasting/chronos_inference.py
CHANGED
|
@@ -159,10 +159,13 @@ class ChronosInferencePipeline:
|
|
| 159 |
|
| 160 |
total_start = time.time()
|
| 161 |
|
| 162 |
-
# BATCH INFERENCE:
|
|
|
|
|
|
|
|
|
|
| 163 |
print(f"\n[BATCH] Preparing contexts for {len(forecast_borders)} borders...")
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
for i, border in enumerate(forecast_borders, 1):
|
| 168 |
print(f" [{i}/{len(forecast_borders)}] Extracting context for {border}...", flush=True)
|
|
@@ -178,8 +181,8 @@ class ChronosInferencePipeline:
|
|
| 178 |
|
| 179 |
# Extract context values and convert to PyTorch tensor
|
| 180 |
context = torch.from_numpy(context_data[target_col].values).float()
|
| 181 |
-
|
| 182 |
-
|
| 183 |
|
| 184 |
except Exception as e:
|
| 185 |
import traceback
|
|
@@ -188,83 +191,116 @@ class ChronosInferencePipeline:
|
|
| 188 |
print(f" [ERROR] {border}: {error_msg}", flush=True)
|
| 189 |
results['borders'][border] = {'error': error_msg, 'traceback': traceback_str}
|
| 190 |
|
| 191 |
-
#
|
| 192 |
-
if
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
print(f"[BATCH] Batch shape: {batch_tensor.shape}", flush=True)
|
| 196 |
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
-
|
| 207 |
-
print(f"[BATCH]
|
| 208 |
-
print(f"[BATCH] Forecast shape: {batch_forecasts.shape}", flush=True)
|
| 209 |
|
| 210 |
# Process each border's forecast
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
forecast_numpy =
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
# Add summary metadata
|
| 270 |
results['metadata']['total_time_s'] = time.time() - total_start
|
|
|
|
| 159 |
|
| 160 |
total_start = time.time()
|
| 161 |
|
| 162 |
+
# SUB-BATCH INFERENCE: Process borders in chunks to fit GPU memory
|
| 163 |
+
# T4 GPU has 14.74 GB total, model uses ~14 GB, so we need small batches
|
| 164 |
+
SUB_BATCH_SIZE = 10 # Process 10 borders at a time
|
| 165 |
+
|
| 166 |
print(f"\n[BATCH] Preparing contexts for {len(forecast_borders)} borders...")
|
| 167 |
+
all_contexts = []
|
| 168 |
+
all_border_names = []
|
| 169 |
|
| 170 |
for i, border in enumerate(forecast_borders, 1):
|
| 171 |
print(f" [{i}/{len(forecast_borders)}] Extracting context for {border}...", flush=True)
|
|
|
|
| 181 |
|
| 182 |
# Extract context values and convert to PyTorch tensor
|
| 183 |
context = torch.from_numpy(context_data[target_col].values).float()
|
| 184 |
+
all_contexts.append(context)
|
| 185 |
+
all_border_names.append(border)
|
| 186 |
|
| 187 |
except Exception as e:
|
| 188 |
import traceback
|
|
|
|
| 191 |
print(f" [ERROR] {border}: {error_msg}", flush=True)
|
| 192 |
results['borders'][border] = {'error': error_msg, 'traceback': traceback_str}
|
| 193 |
|
| 194 |
+
# Process contexts in sub-batches
|
| 195 |
+
if all_contexts:
|
| 196 |
+
num_contexts = len(all_contexts)
|
| 197 |
+
num_sub_batches = (num_contexts + SUB_BATCH_SIZE - 1) // SUB_BATCH_SIZE
|
|
|
|
| 198 |
|
| 199 |
+
print(f"\n[BATCH] Running inference in {num_sub_batches} sub-batches of {SUB_BATCH_SIZE} borders...")
|
| 200 |
|
| 201 |
+
all_forecasts = []
|
| 202 |
+
total_inference_time = 0
|
| 203 |
+
|
| 204 |
+
for batch_idx in range(num_sub_batches):
|
| 205 |
+
start_idx = batch_idx * SUB_BATCH_SIZE
|
| 206 |
+
end_idx = min(start_idx + SUB_BATCH_SIZE, num_contexts)
|
| 207 |
+
|
| 208 |
+
# Get sub-batch
|
| 209 |
+
sub_batch_contexts = all_contexts[start_idx:end_idx]
|
| 210 |
+
sub_batch_names = all_border_names[start_idx:end_idx]
|
| 211 |
+
|
| 212 |
+
batch_tensor = torch.stack(sub_batch_contexts)
|
| 213 |
+
print(f"[BATCH {batch_idx+1}/{num_sub_batches}] Processing {len(sub_batch_names)} borders: {sub_batch_names[0]} ... {sub_batch_names[-1]}", flush=True)
|
| 214 |
+
print(f"[BATCH {batch_idx+1}/{num_sub_batches}] Batch shape: {batch_tensor.shape}", flush=True)
|
| 215 |
+
|
| 216 |
+
inference_start = time.time()
|
| 217 |
+
|
| 218 |
+
# Run batch inference
|
| 219 |
+
batch_forecasts = pipeline.predict(
|
| 220 |
+
inputs=batch_tensor,
|
| 221 |
+
prediction_length=prediction_hours,
|
| 222 |
+
num_samples=num_samples
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
inference_time = time.time() - inference_start
|
| 226 |
+
total_inference_time += inference_time
|
| 227 |
+
print(f"[BATCH {batch_idx+1}/{num_sub_batches}] Complete in {inference_time:.1f}s ({inference_time/len(sub_batch_names):.2f}s per border)", flush=True)
|
| 228 |
+
|
| 229 |
+
# Store forecasts
|
| 230 |
+
all_forecasts.append(batch_forecasts)
|
| 231 |
+
|
| 232 |
+
# Clear GPU cache between sub-batches
|
| 233 |
+
if torch.cuda.is_available():
|
| 234 |
+
torch.cuda.empty_cache()
|
| 235 |
|
| 236 |
+
print(f"\n[BATCH] All inference complete in {total_inference_time:.1f}s total")
|
| 237 |
+
print(f"[BATCH] Average: {total_inference_time/num_contexts:.2f}s per border")
|
|
|
|
| 238 |
|
| 239 |
# Process each border's forecast
|
| 240 |
+
forecast_idx = 0
|
| 241 |
+
for batch_idx, batch_forecasts in enumerate(all_forecasts):
|
| 242 |
+
start_idx = batch_idx * SUB_BATCH_SIZE
|
| 243 |
+
end_idx = min(start_idx + SUB_BATCH_SIZE, num_contexts)
|
| 244 |
+
sub_batch_names = all_border_names[start_idx:end_idx]
|
| 245 |
+
|
| 246 |
+
for i, border in enumerate(sub_batch_names):
|
| 247 |
+
forecast_idx += 1
|
| 248 |
+
print(f"\n[{forecast_idx}/{num_contexts}] Processing forecast for {border}...", flush=True)
|
| 249 |
+
border_start = time.time()
|
| 250 |
+
|
| 251 |
+
try:
|
| 252 |
+
# Extract this border's forecast from batch
|
| 253 |
+
forecast = batch_forecasts[i] # Extract from batch dimension
|
| 254 |
+
|
| 255 |
+
# Calculate quantiles
|
| 256 |
+
forecast_numpy = forecast.numpy()
|
| 257 |
+
print(f"[DEBUG] Raw forecast shape: {forecast_numpy.shape}", flush=True)
|
| 258 |
+
|
| 259 |
+
# Chronos may return (batch, num_samples, time) or (num_samples, time)
|
| 260 |
+
# Squeeze any batch dimension (if present)
|
| 261 |
+
if forecast_numpy.ndim == 3:
|
| 262 |
+
print(f"[DEBUG] 3D forecast detected, squeezing batch dimension", flush=True)
|
| 263 |
+
forecast_numpy = forecast_numpy.squeeze(axis=0) # Remove batch dim
|
| 264 |
+
|
| 265 |
+
print(f"[DEBUG] Forecast shape after squeeze: {forecast_numpy.shape}, Expected: ({num_samples}, {prediction_hours}) or ({prediction_hours}, {num_samples})", flush=True)
|
| 266 |
+
|
| 267 |
+
# Now forecast should be 2D: either (num_samples, time) or (time, num_samples)
|
| 268 |
+
# Compute median along samples axis to get (time,) shape
|
| 269 |
+
if forecast_numpy.shape[0] == num_samples and forecast_numpy.shape[1] == prediction_hours:
|
| 270 |
+
# Shape is (num_samples, time) - use axis=0
|
| 271 |
+
print(f"[DEBUG] Using axis=0 for shape (num_samples={num_samples}, time={prediction_hours})", flush=True)
|
| 272 |
+
median = np.median(forecast_numpy, axis=0)
|
| 273 |
+
q10 = np.quantile(forecast_numpy, 0.1, axis=0)
|
| 274 |
+
q90 = np.quantile(forecast_numpy, 0.9, axis=0)
|
| 275 |
+
elif forecast_numpy.shape[0] == prediction_hours and forecast_numpy.shape[1] == num_samples:
|
| 276 |
+
# Shape is (time, num_samples) - use axis=1
|
| 277 |
+
print(f"[DEBUG] Using axis=1 for shape (time={prediction_hours}, num_samples={num_samples})", flush=True)
|
| 278 |
+
median = np.median(forecast_numpy, axis=1)
|
| 279 |
+
q10 = np.quantile(forecast_numpy, 0.1, axis=1)
|
| 280 |
+
q90 = np.quantile(forecast_numpy, 0.9, axis=1)
|
| 281 |
+
else:
|
| 282 |
+
raise ValueError(f"Unexpected forecast shape: {forecast_numpy.shape}, expected ({num_samples}, {prediction_hours}) or ({prediction_hours}, {num_samples})")
|
| 283 |
+
|
| 284 |
+
print(f"[DEBUG] Final median shape: {median.shape}, Expected: ({prediction_hours},)", flush=True)
|
| 285 |
+
assert median.shape == (prediction_hours,), f"Median shape {median.shape} != expected ({prediction_hours},)"
|
| 286 |
+
|
| 287 |
+
# Store results
|
| 288 |
+
results['borders'][border] = {
|
| 289 |
+
'median': median.tolist(),
|
| 290 |
+
'q10': q10.tolist(),
|
| 291 |
+
'q90': q90.tolist(),
|
| 292 |
+
'inference_time_s': time.time() - border_start
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
print(f" [OK] Complete in {time.time() - border_start:.1f}s")
|
| 296 |
+
|
| 297 |
+
except Exception as e:
|
| 298 |
+
import traceback
|
| 299 |
+
error_msg = f"{type(e).__name__}: {str(e)}"
|
| 300 |
+
traceback_str = traceback.format_exc()
|
| 301 |
+
print(f" [ERROR] {error_msg}", flush=True)
|
| 302 |
+
print(f"Traceback:\n{traceback_str}", flush=True)
|
| 303 |
+
results['borders'][border] = {'error': error_msg, 'traceback': traceback_str}
|
| 304 |
|
| 305 |
# Add summary metadata
|
| 306 |
results['metadata']['total_time_s'] = time.time() - total_start
|