#!/usr/bin/env python3 """ Full Inference Run for Chronos 2 Zero-Shot Forecasting Generates 14-day forecasts for all 38 FBMC borders """ import time import pandas as pd import numpy as np import polars as pl from datetime import datetime, timedelta from chronos import Chronos2Pipeline import torch from src.forecasting.feature_availability import FeatureAvailability from src.forecasting.dynamic_forecast import DynamicForecast print("="*60) print("CHRONOS 2 FULL INFERENCE - ALL BORDERS") print("="*60) total_start = time.time() # Step 1: Load dataset print("\n[1/7] Loading dataset from HuggingFace...") start_time = time.time() from datasets import load_dataset import os # Use HF token for private dataset access hf_token = os.getenv("HF_TOKEN") if not hf_token: raise ValueError("HF_TOKEN not found in environment. Please set HF_TOKEN.") dataset = load_dataset( "evgueni-p/fbmc-features-24month", split="train", token=hf_token ) df = pl.from_pandas(dataset.to_pandas()) # Ensure timestamp is datetime (check if conversion needed) if df['timestamp'].dtype == pl.String: df = df.with_columns(pl.col('timestamp').str.to_datetime()) elif df['timestamp'].dtype != pl.Datetime: df = df.with_columns(pl.col('timestamp').cast(pl.Datetime)) print(f"[OK] Loaded {len(df)} rows, {len(df.columns)} columns") print(f" Date range: {df['timestamp'].min()} to {df['timestamp'].max()}") print(f" Load time: {time.time() - start_time:.1f}s") # Feature categorization using FeatureAvailability module print("\n[Feature Categorization]") categories = FeatureAvailability.categorize_features(df.columns) # Validate categorization is_valid, warnings = FeatureAvailability.validate_categorization(categories, verbose=False) # Report categories print(f" Full-horizon D+14: {len(categories['full_horizon_d14'])} (temporal + weather + outages + LTA)") print(f" Partial D+1: {len(categories['partial_d1'])} (load forecasts)") print(f" Historical only: {len(categories['historical'])} (prices, generation, demand, lags, etc.)") print(f" Total features: {sum(len(v) for v in categories.values())}") if not is_valid: print("\n[!] WARNING: Feature categorization issues:") for w in warnings: print(f" - {w}") # For Chronos-2: combine full+partial for future covariates # (Chronos-2 supports partial availability via masking) known_future_cols = categories['full_horizon_d14'] + categories['partial_d1'] past_only_cols = categories['historical'] # Step 2: Identify all target borders print("\n[2/7] Identifying target borders...") target_cols = [col for col in df.columns if col.startswith('target_border_')] borders = [col.replace('target_border_', '') for col in target_cols] print(f"[OK] Found {len(borders)} borders") print(f" Borders: {', '.join(borders[:5])}... (showing first 5)") # Step 3: Prepare forecast parameters print("\n[3/7] Setting up forecast parameters...") # Use a date that has 14 days of future data available # Dataset ends at 2025-09-30 23:00, so we need run_date such that # forecast ends at most at 2025-09-30 23:00 # For 336 hours (14 days), run_date should be at most 2025-09-16 23:00 context_hours = 512 prediction_hours = 336 # 14 days (fixed) max_date = df['timestamp'].max() run_date = max_date - timedelta(hours=prediction_hours) print(f" Run date: {run_date}") print(f" Context window: {context_hours} hours") print(f" Prediction horizon: {prediction_hours} hours (14 days, D+1 to D+14)") print(f" Forecast range: {run_date + timedelta(hours=1)} to {run_date + timedelta(hours=prediction_hours)}") # Initialize DynamicForecast once for all borders forecaster = DynamicForecast( dataset=df, context_hours=context_hours, forecast_hours=prediction_hours ) print(f"[OK] DynamicForecast initialized with time-aware data extraction") # Step 4: Load model print("\n[4/7] Loading Chronos 2 model on GPU...") model_start = time.time() pipeline = Chronos2Pipeline.from_pretrained( 'amazon/chronos-2', device_map='cuda', dtype=torch.float32 ) model_time = time.time() - model_start print(f"[OK] Model loaded in {model_time:.1f}s") print(f" Device: {next(pipeline.model.parameters()).device}") # Step 5: Run inference for all borders print(f"\n[5/7] Running zero-shot inference for {len(borders)} borders...") print(f" Prediction: {prediction_hours} hours (14 days) per border") print(f" Progress:") all_forecasts = [] inference_times = [] for i, border in enumerate(borders, 1): border_start = time.time() try: # Prepare data with time-aware extraction context_data, future_data = forecaster.prepare_forecast_data(run_date, border) # Validate no data leakage (on first border only, for performance) if i == 1: is_valid, errors = forecaster.validate_no_leakage(context_data, future_data, run_date) if not is_valid: print(f"\n[ERROR] Data leakage detected on first border ({border}):") for err in errors: print(f" - {err}") exit(1) # Call API with separate context and future dataframes forecasts = pipeline.predict_df( context_data, # Historical data (positional parameter) future_df=future_data, # Future covariates (named parameter) prediction_length=prediction_hours, id_column='border', timestamp_column='timestamp', target='target' ) # Add border identifier forecasts['border'] = border all_forecasts.append(forecasts) border_time = time.time() - border_start inference_times.append(border_time) print(f" [{i:2d}/{len(borders)}] {border:15s} - {border_time:.2f}s") except Exception as e: print(f" [{i:2d}/{len(borders)}] {border:15s} - FAILED: {e}") inference_time = time.time() - model_start - model_time print(f"\n[OK] Inference complete!") print(f" Total inference time: {inference_time:.1f}s") print(f" Average per border: {np.mean(inference_times):.2f}s") print(f" Successful forecasts: {len(all_forecasts)}/{len(borders)}") # Step 6: Combine and save results print("\n[6/7] Saving forecast results...") if all_forecasts: # Combine all forecasts combined_forecasts = pd.concat(all_forecasts, ignore_index=True) # Save as parquet (efficient, compressed) output_file = '/tmp/chronos2_forecasts_14day.parquet' combined_forecasts.to_parquet(output_file) print(f"[OK] Forecasts saved to: {output_file}") print(f" Shape: {combined_forecasts.shape}") print(f" Columns: {list(combined_forecasts.columns)}") print(f" File size: {os.path.getsize(output_file) / 1024 / 1024:.2f} MB") # Save summary statistics summary_file = '/tmp/chronos2_forecast_summary.csv' summary_data = [] for border in borders: border_forecasts = combined_forecasts[combined_forecasts['border'] == border] if len(border_forecasts) > 0 and 'mean' in border_forecasts.columns: summary_data.append({ 'border': border, 'forecast_points': len(border_forecasts), 'mean_forecast': border_forecasts['mean'].mean(), 'min_forecast': border_forecasts['mean'].min(), 'max_forecast': border_forecasts['mean'].max(), 'std_forecast': border_forecasts['mean'].std() }) summary_df = pd.DataFrame(summary_data) summary_df.to_csv(summary_file, index=False) print(f"[OK] Summary saved to: {summary_file}") else: print("[!] No successful forecasts to save") # Step 7: Validation print("\n[7/7] Validating results...") if all_forecasts: # Check for NaN values nan_count = combined_forecasts.isna().sum().sum() print(f" NaN values: {nan_count}") # Sanity checks on mean forecast if 'mean' in combined_forecasts.columns: mean_forecast = combined_forecasts['mean'] print(f" Overall statistics:") print(f" Mean: {mean_forecast.mean():.2f} MW") print(f" Min: {mean_forecast.min():.2f} MW") print(f" Max: {mean_forecast.max():.2f} MW") print(f" Std: {mean_forecast.std():.2f} MW") # Warnings if mean_forecast.min() < 0: print(" [!] WARNING: Negative forecasts detected") if mean_forecast.max() > 20000: print(" [!] WARNING: Unreasonably high forecasts") if nan_count == 0 and mean_forecast.min() >= 0 and mean_forecast.max() < 20000: print(" [OK] Validation passed!") # Performance summary print("\n" + "="*60) print("FULL INFERENCE SUMMARY") print("="*60) print(f"Borders forecasted: {len(all_forecasts)}/{len(borders)}") print(f"Forecast horizon: {prediction_hours} hours (14 days)") print(f"Total inference time: {inference_time:.1f}s ({inference_time / 60:.2f} min)") print(f"Average per border: {np.mean(inference_times):.2f}s") print(f"Speed: {prediction_hours * len(all_forecasts) / inference_time:.1f} hours/second") # Target check if inference_time < 300: # 5 minutes print(f"\n[OK] Performance target met! (<5 min for full run)") else: print(f"\n[!] Performance slower than target (expected <5 min)") print("="*60) print("[OK] FULL INFERENCE COMPLETE!") print("="*60) # Total time total_time = time.time() - total_start print(f"\nTotal execution time: {total_time:.1f}s ({total_time / 60:.1f} min)")