Spaces:
Running
Running
| import os | |
| import logging | |
| import librosa | |
| import numpy as np | |
| import soundfile as sf | |
| import torch | |
| from stqdm import stqdm | |
| import streamlit as st | |
| from pydub import AudioSegment | |
| from app.service.vocal_remover import nets | |
| if os.environ.get("LIMIT_CPU", False): | |
| torch.set_num_threads(1) | |
| def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32): | |
| if min_range < fade_size * 2: | |
| raise ValueError("min_range must be >= fade_size * 2") | |
| idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0] | |
| start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0]) | |
| end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1]) | |
| artifact_idx = np.where(end_idx - start_idx > min_range)[0] | |
| weight = np.zeros_like(y_mask) | |
| if len(artifact_idx) > 0: | |
| start_idx = start_idx[artifact_idx] | |
| end_idx = end_idx[artifact_idx] | |
| old_e = None | |
| for s, e in zip(start_idx, end_idx): | |
| if old_e is not None and s - old_e < fade_size: | |
| s = old_e - fade_size * 2 | |
| if s != 0: | |
| weight[:, :, s : s + fade_size] = np.linspace(0, 1, fade_size) | |
| else: | |
| s -= fade_size | |
| if e != y_mask.shape[2]: | |
| weight[:, :, e - fade_size : e] = np.linspace(1, 0, fade_size) | |
| else: | |
| e += fade_size | |
| weight[:, :, s + fade_size : e - fade_size] = 1 | |
| old_e = e | |
| v_mask = 1 - y_mask | |
| y_mask += weight * v_mask | |
| return y_mask | |
| def make_padding(width, cropsize, offset): | |
| left = offset | |
| roi_size = cropsize - offset * 2 | |
| if roi_size == 0: | |
| roi_size = cropsize | |
| right = roi_size - (width % roi_size) + left | |
| return left, right, roi_size | |
| def wave_to_spectrogram(wave, hop_length, n_fft): | |
| wave_left = np.asfortranarray(wave[0]) | |
| wave_right = np.asfortranarray(wave[1]) | |
| spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length) | |
| spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length) | |
| spec = np.asfortranarray([spec_left, spec_right]) | |
| return spec | |
| def spectrogram_to_wave(spec, hop_length=1024): | |
| if spec.ndim == 2: | |
| wave = librosa.istft(spec, hop_length=hop_length) | |
| elif spec.ndim == 3: | |
| spec_left = np.asfortranarray(spec[0]) | |
| spec_right = np.asfortranarray(spec[1]) | |
| wave_left = librosa.istft(spec_left, hop_length=hop_length) | |
| wave_right = librosa.istft(spec_right, hop_length=hop_length) | |
| wave = np.asfortranarray([wave_left, wave_right]) | |
| return wave | |
| class Separator(object): | |
| def __init__(self, model, device, batchsize, cropsize, postprocess=False, progress_bar=None): | |
| self.model = model | |
| self.offset = model.offset | |
| self.device = device | |
| self.batchsize = batchsize | |
| self.cropsize = cropsize | |
| self.postprocess = postprocess | |
| self.progress_bar = progress_bar | |
| def _separate(self, X_mag_pad, roi_size): | |
| X_dataset = [] | |
| patches = (X_mag_pad.shape[2] - 2 * self.offset) // roi_size | |
| for i in range(patches): | |
| start = i * roi_size | |
| X_mag_crop = X_mag_pad[:, :, start : start + self.cropsize] | |
| X_dataset.append(X_mag_crop) | |
| X_dataset = np.asarray(X_dataset) | |
| self.model.eval() | |
| with torch.no_grad(): | |
| mask = [] | |
| # To reduce the overhead, dataloader is not used. | |
| for i in stqdm( | |
| range(0, patches, self.batchsize), | |
| st_container=self.progress_bar, | |
| gui=False, | |
| ): | |
| X_batch = X_dataset[i : i + self.batchsize] | |
| X_batch = torch.from_numpy(X_batch).to(self.device) | |
| pred = self.model.predict_mask(X_batch) | |
| pred = pred.detach().cpu().numpy() | |
| pred = np.concatenate(pred, axis=2) | |
| mask.append(pred) | |
| mask = np.concatenate(mask, axis=2) | |
| return mask | |
| def _preprocess(self, X_spec): | |
| X_mag = np.abs(X_spec) | |
| X_phase = np.angle(X_spec) | |
| return X_mag, X_phase | |
| def _postprocess(self, mask, X_mag, X_phase): | |
| if self.postprocess: | |
| mask = merge_artifacts(mask) | |
| y_spec = mask * X_mag * np.exp(1.0j * X_phase) | |
| v_spec = (1 - mask) * X_mag * np.exp(1.0j * X_phase) | |
| return y_spec, v_spec | |
| def separate(self, X_spec): | |
| X_mag, X_phase = self._preprocess(X_spec) | |
| n_frame = X_mag.shape[2] | |
| pad_l, pad_r, roi_size = make_padding(n_frame, self.cropsize, self.offset) | |
| X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant") | |
| X_mag_pad /= X_mag_pad.max() | |
| mask = self._separate(X_mag_pad, roi_size) | |
| mask = mask[:, :, :n_frame] | |
| y_spec, v_spec = self._postprocess(mask, X_mag, X_phase) | |
| return y_spec, v_spec | |
| def load_model(pretrained_model, n_fft=2048): | |
| model = nets.CascadedNet(n_fft, 32, 128) | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda:0") | |
| model.to(device) | |
| # elif torch.backends.mps.is_available() and torch.backends.mps.is_built(): | |
| # device = torch.device("mps") | |
| # model.to(device) | |
| else: | |
| device = torch.device("cpu") | |
| model.load_state_dict(torch.load(pretrained_model, map_location=device)) | |
| return model, device | |
| # @st.cache_data(show_spinner=False) | |
| def separate( | |
| input, | |
| model, | |
| device, | |
| output_dir, | |
| batchsize=4, | |
| cropsize=256, | |
| postprocess=False, | |
| hop_length=1024, | |
| n_fft=2048, | |
| sr=44100, | |
| progress_bar=None, | |
| only_no_vocals=False, | |
| ): | |
| X, sr = librosa.load(input, sr=sr, mono=False, dtype=np.float32, res_type="kaiser_fast") | |
| basename = os.path.splitext(os.path.basename(input))[0] | |
| if X.ndim == 1: | |
| # mono to stereo | |
| X = np.asarray([X, X]) | |
| X_spec = wave_to_spectrogram(X, hop_length, n_fft) | |
| with torch.no_grad(): | |
| sp = Separator(model, device, batchsize, cropsize, postprocess, progress_bar=progress_bar) | |
| y_spec, v_spec = sp.separate(X_spec) | |
| base_dir = f"{output_dir}/vocal_remover/{basename}" | |
| os.makedirs(base_dir, exist_ok=True) | |
| wave = spectrogram_to_wave(y_spec, hop_length=hop_length) | |
| try: | |
| sf.write(f"{base_dir}/no_vocals.mp3", wave.T, sr) | |
| except Exception: | |
| logging.error("Failed to write no_vocals.mp3, trying pydub...") | |
| pydub_write(wave, f"{base_dir}/no_vocals.mp3", sr) | |
| if only_no_vocals: | |
| return | |
| wave = spectrogram_to_wave(v_spec, hop_length=hop_length) | |
| try: | |
| sf.write(f"{base_dir}/vocals.mp3", wave.T, sr) | |
| except Exception: | |
| logging.error("Failed to write vocals.mp3, trying pydub...") | |
| pydub_write(wave, f"{base_dir}/vocals.mp3", sr) | |
| def pydub_write(wave, output_path, frame_rate, audio_format="mp3"): | |
| # Ensure the wave data is in the right format for pydub (mono and 16-bit depth) | |
| wave_16bit = (wave * 32767).astype(np.int16) | |
| audio_segment = AudioSegment( | |
| wave_16bit.tobytes(), | |
| frame_rate=frame_rate, | |
| sample_width=wave_16bit.dtype.itemsize, | |
| channels=1, | |
| ) | |
| audio_segment.export(output_path, format=audio_format) | |