Spaces:
Runtime error
Runtime error
| // Defines sigaction on msys: | |
| static llama_context ** g_ctx; | |
| extern "C" { | |
| struct MyModel* create_mymodel(int argc, char ** argv) { | |
| gpt_params params; | |
| if (gpt_params_parse(argc, argv, params) == false) { | |
| return nullptr; | |
| } | |
| fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); | |
| if (params.seed == LLAMA_DEFAULT_SEED) { | |
| params.seed = time(NULL); | |
| } | |
| fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); | |
| llama_backend_init(params.numa); | |
| llama_model * model; | |
| llama_context * ctx; | |
| g_ctx = &ctx; | |
| // load the model and apply lora adapter, if any | |
| std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
| if (model == NULL) { | |
| fprintf(stderr, "%s: error: unable to load model\n", __func__); | |
| return nullptr; | |
| } | |
| // print system information | |
| { | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", | |
| params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); | |
| } | |
| struct MyModel * ret = new MyModel(); | |
| ret->ctx = ctx; | |
| ret->params = params; | |
| ret->n_past = 0; | |
| // printf("ctx: %d\n", ret->ctx); | |
| return ret; | |
| } | |
| void free_mymodel(struct MyModel * mymodel) { | |
| llama_context * ctx = mymodel->ctx; | |
| llama_print_timings(ctx); | |
| llama_free(ctx); | |
| delete mymodel; | |
| } | |
| bool eval_float(void * model, float * input, int N){ | |
| MyModel * mymodel = (MyModel*)model; | |
| llama_context * ctx = mymodel->ctx; | |
| gpt_params params = mymodel->params; | |
| int n_emb = llama_n_embd(ctx); | |
| int n_past = mymodel->n_past; | |
| int n_batch = N; // params.n_batch; | |
| for (int i = 0; i < (int) N; i += n_batch) { | |
| int n_eval = (int) N - i; | |
| if (n_eval > n_batch) { | |
| n_eval = n_batch; | |
| } | |
| if (llama_eval_embd(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) { | |
| fprintf(stderr, "%s : failed to eval\n", __func__); | |
| return false; | |
| } | |
| n_past += n_eval; | |
| } | |
| mymodel->n_past = n_past; | |
| return true; | |
| } | |
| bool eval_tokens(void * model, std::vector<llama_token> tokens) { | |
| MyModel * mymodel = (MyModel* )model; | |
| llama_context * ctx; | |
| ctx = mymodel->ctx; | |
| gpt_params params = mymodel->params; | |
| int n_past = mymodel->n_past; | |
| for (int i = 0; i < (int) tokens.size(); i += params.n_batch) { | |
| int n_eval = (int) tokens.size() - i; | |
| if (n_eval > params.n_batch) { | |
| n_eval = params.n_batch; | |
| } | |
| if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) { | |
| fprintf(stderr, "%s : failed to eval\n", __func__); | |
| return false; | |
| } | |
| n_past += n_eval; | |
| } | |
| mymodel->n_past = n_past; | |
| return true; | |
| } | |
| bool eval_id(struct MyModel* mymodel, int id) { | |
| std::vector<llama_token> tokens; | |
| tokens.push_back(id); | |
| return eval_tokens(mymodel, tokens); | |
| } | |
| bool eval_string(struct MyModel * mymodel,const char* str){ | |
| llama_context * ctx = mymodel->ctx; | |
| std::string str2 = str; | |
| std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true); | |
| eval_tokens(mymodel, embd_inp); | |
| return true; | |
| } | |
| llama_token sampling_id(struct MyModel* mymodel) { | |
| llama_context* ctx = mymodel->ctx; | |
| gpt_params params = mymodel->params; | |
| // int n_ctx = llama_n_ctx(ctx); | |
| // out of user input, sample next token | |
| const float temp = params.temp; | |
| const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; | |
| const float top_p = params.top_p; | |
| const float tfs_z = params.tfs_z; | |
| const float typical_p = params.typical_p; | |
| // const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; | |
| // const float repeat_penalty = params.repeat_penalty; | |
| // const float alpha_presence = params.presence_penalty; | |
| // const float alpha_frequency = params.frequency_penalty; | |
| const int mirostat = params.mirostat; | |
| const float mirostat_tau = params.mirostat_tau; | |
| const float mirostat_eta = params.mirostat_eta; | |
| // const bool penalize_nl = params.penalize_nl; | |
| llama_token id = 0; | |
| { | |
| auto logits = llama_get_logits(ctx); | |
| auto n_vocab = llama_n_vocab(ctx); | |
| // Apply params.logit_bias map | |
| for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { | |
| logits[it->first] += it->second; | |
| } | |
| std::vector<llama_token_data> candidates; | |
| candidates.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
| } | |
| llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
| // TODO: Apply penalties | |
| // float nl_logit = logits[llama_token_nl()]; | |
| // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); | |
| // llama_sample_repetition_penalty(ctx, &candidates_p, | |
| // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
| // last_n_repeat, repeat_penalty); | |
| // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, | |
| // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
| // last_n_repeat, alpha_frequency, alpha_presence); | |
| // if (!penalize_nl) { | |
| // logits[llama_token_nl()] = nl_logit; | |
| // } | |
| if (temp <= 0) { | |
| // Greedy sampling | |
| id = llama_sample_token_greedy(ctx, &candidates_p); | |
| } else { | |
| if (mirostat == 1) { | |
| static float mirostat_mu = 2.0f * mirostat_tau; | |
| const int mirostat_m = 100; | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); | |
| } else if (mirostat == 2) { | |
| static float mirostat_mu = 2.0f * mirostat_tau; | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); | |
| } else { | |
| // Temperature sampling | |
| llama_sample_top_k(ctx, &candidates_p, top_k, 1); | |
| llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); | |
| llama_sample_typical(ctx, &candidates_p, typical_p, 1); | |
| llama_sample_top_p(ctx, &candidates_p, top_p, 1); | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| id = llama_sample_token(ctx, &candidates_p); | |
| } | |
| } | |
| } | |
| return id; | |
| } | |
| const char * sampling(struct MyModel * mymodel) { | |
| llama_context * ctx = mymodel->ctx; | |
| int id = sampling_id(mymodel); | |
| static std::string ret; | |
| if (id == llama_token_eos()) { | |
| ret = "</s>"; | |
| } else { | |
| ret = llama_token_to_str(ctx, id); | |
| } | |
| eval_id(mymodel, id); | |
| return ret.c_str(); | |
| } | |
| } | |