Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.models.cross_attention import CrossAttention | |
| #from pipeline_sd import StableDiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline | |
| import matplotlib.pyplot as plt | |
| from prompt2prompt.ptp_utils import AttentionStore | |
| import prompt2prompt.ptp_utils as ptp_utils | |
| from PIL import Image | |
| class Prompt2PromptPipeline(StableDiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| controller: AttentionStore = None, # 传入attention_store作为p2p的控制。 | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| self.register_attention_control(controller) # add attention controller | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # step callback | |
| latents = controller.step_callback(latents) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 9. Run safety checker | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) | |
| # 10. Convert to PIL | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def register_attention_control(self, controller): | |
| attn_procs = {} | |
| cross_att_count = 0 | |
| for name in self.unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = self.unet.config.block_out_channels[-1] | |
| place_in_unet = "mid" | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] | |
| place_in_unet = "up" | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = self.unet.config.block_out_channels[block_id] | |
| place_in_unet = "down" | |
| else: | |
| continue | |
| cross_att_count += 1 | |
| attn_procs[name] = P2PCrossAttnProcessor( | |
| controller=controller, place_in_unet=place_in_unet | |
| ) | |
| self.unet.set_attn_processor(attn_procs) | |
| controller.num_att_layers = cross_att_count | |
| # def aggregate_attention(self, prompts, attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int): | |
| # out = [] | |
| # attention_maps = attention_store.get_average_attention() | |
| # num_pixels = res ** 2 | |
| # for location in from_where: | |
| # for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
| # if item.shape[1] == num_pixels: | |
| # cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] | |
| # out.append(cross_maps) | |
| # out = torch.cat(out, dim=0) | |
| # out = out.sum(0) / out.shape[0] | |
| # return out.cpu() | |
| def aggregate_attention(self, prompts, attention_store: AttentionStore, res: List[int], from_where: List[str], is_cross: bool, select: int): | |
| out = [] | |
| attention_maps = attention_store.get_average_attention() | |
| # num_pixels = res ** 2 | |
| num_pixels = res[0] * res[1] | |
| for location in from_where: | |
| for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
| if item.shape[1] == num_pixels: | |
| cross_maps = item.reshape(len(prompts), -1, res[0], res[1], item.shape[-1])[select] | |
| out.append(cross_maps) | |
| out = torch.cat(out, dim=0) | |
| out = out.sum(0) / out.shape[0] | |
| return out.cpu() | |
| def show_cross_attention(self, prompts, attention_store: AttentionStore, res: List[int], from_where: List[str], select: int = 0, image_size: List[int]=[1024, 256], num_rows: int = 1, font_scale=2, thickness=4, cmap_name="plasma"): | |
| tokens = self.tokenizer.encode(prompts[select]) | |
| decoder = self.tokenizer.decode | |
| attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select) | |
| images = [] | |
| cmap = plt.get_cmap(cmap_name) | |
| cmap_r = cmap.reversed() | |
| for i in range(len(tokens)): | |
| image = attention_maps[:, :, i] | |
| image = 255 * image / image.max() | |
| image = image.unsqueeze(-1).expand(*image.shape, 3) | |
| image = image.numpy().astype(np.uint8) | |
| # image = np.array(Image.fromarray(image).resize((256, 256))) | |
| # image = np.array(Image.fromarray(image).resize((512, 128))) | |
| image = cmap(np.array(image)[:,:,0])[:, :, :3] # 省略透明度通道 | |
| # image = image ** 2 | |
| image = (image - image.min()) / (image.max() - image.min()) | |
| image = Image.fromarray(np.uint8(image*255)) | |
| # image = np.array(image.resize((1024, 256))) | |
| image = np.array(image.resize(image_size)) | |
| image = ptp_utils.text_under_image(image, decoder(int(tokens[i])), font_scale=font_scale, thickness=thickness) | |
| images.append(image) | |
| return ptp_utils.view_images(np.stack(images, axis=0), num_rows=num_rows) | |
| # def show_cross_attention(self, prompts, attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0): | |
| # tokens = self.tokenizer.encode(prompts[select]) | |
| # decoder = self.tokenizer.decode | |
| # attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select) | |
| # images = [] | |
| # for i in range(len(tokens)): | |
| # image = attention_maps[:, :, i] | |
| # image = 255 * image / image.max() | |
| # image = image.unsqueeze(-1).expand(*image.shape, 3) | |
| # image = image.numpy().astype(np.uint8) | |
| # image = np.array(Image.fromarray(image).resize((256, 256))) | |
| # image = ptp_utils.text_under_image(image, decoder(int(tokens[i]))) | |
| # images.append(image) | |
| # ptp_utils.view_images(np.stack(images, axis=0)) | |
| def show_self_attention_comp(self, prompts, attention_store: AttentionStore, res: int, from_where: List[str], | |
| max_com=10, select: int = 0): | |
| attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select).numpy().reshape((res ** 2, res ** 2)) | |
| u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) | |
| images = [] | |
| for i in range(max_com): | |
| image = vh[i].reshape(res, res) | |
| image = image - image.min() | |
| image = 255 * image / image.max() | |
| image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) | |
| image = Image.fromarray(image).resize((256, 256)) | |
| image = np.array(image) | |
| images.append(image) | |
| ptp_utils.view_images(np.concatenate(images, axis=1)) | |
| class P2PCrossAttnProcessor: | |
| def __init__(self, controller, place_in_unet): | |
| super().__init__() | |
| self.controller = controller | |
| self.place_in_unet = place_in_unet | |
| def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size) | |
| query = attn.to_q(hidden_states) | |
| is_cross = encoder_hidden_states is not None | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| # one line change | |
| self.controller(attention_probs, is_cross, self.place_in_unet) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states |