Spaces:
Runtime error
Runtime error
Gagan Bhatia
commited on
Commit
·
b10a55f
1
Parent(s):
0842de0
Update train_model.py
Browse files- src/models/train_model.py +441 -0
src/models/train_model.py
CHANGED
|
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from datasets import load_metric
|
| 7 |
+
from tqdm.auto import tqdm
|
| 8 |
+
from transformers import (
|
| 9 |
+
AdamW,
|
| 10 |
+
T5ForConditionalGeneration,
|
| 11 |
+
MT5ForConditionalGeneration,
|
| 12 |
+
T5TokenizerFast as T5Tokenizer,
|
| 13 |
+
MT5TokenizerFast as MT5Tokenizer,
|
| 14 |
+
)
|
| 15 |
+
from transformers import AutoTokenizer
|
| 16 |
+
from torch.utils.data import Dataset, DataLoader
|
| 17 |
+
from transformers import AutoModelWithLMHead, AutoTokenizer
|
| 18 |
+
import pytorch_lightning as pl
|
| 19 |
+
from pytorch_lightning.loggers import MLFlowLogger
|
| 20 |
+
from pytorch_lightning import Trainer
|
| 21 |
+
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
|
| 22 |
+
from pytorch_lightning import LightningDataModule
|
| 23 |
+
from pytorch_lightning import LightningModule
|
| 24 |
+
|
| 25 |
+
torch.cuda.empty_cache()
|
| 26 |
+
pl.seed_everything(42)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class DataModule(Dataset):
|
| 30 |
+
"""
|
| 31 |
+
Data Module for pytorch
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
data: pd.DataFrame,
|
| 37 |
+
tokenizer: T5Tokenizer,
|
| 38 |
+
source_max_token_len: int = 512,
|
| 39 |
+
target_max_token_len: int = 512,
|
| 40 |
+
):
|
| 41 |
+
"""
|
| 42 |
+
:param data:
|
| 43 |
+
:param tokenizer:
|
| 44 |
+
:param source_max_token_len:
|
| 45 |
+
:param target_max_token_len:
|
| 46 |
+
"""
|
| 47 |
+
self.data = data
|
| 48 |
+
self.target_max_token_len = target_max_token_len
|
| 49 |
+
self.source_max_token_len = source_max_token_len
|
| 50 |
+
self.tokenizer = tokenizer
|
| 51 |
+
|
| 52 |
+
def __len__(self):
|
| 53 |
+
return len(self.data)
|
| 54 |
+
|
| 55 |
+
def __getitem__(self, index: int):
|
| 56 |
+
data_row = self.data.iloc[index]
|
| 57 |
+
|
| 58 |
+
input_encoding = self.tokenizer(
|
| 59 |
+
data_row["input_text"],
|
| 60 |
+
max_length=self.source_max_token_len,
|
| 61 |
+
padding="max_length",
|
| 62 |
+
truncation=True,
|
| 63 |
+
return_attention_mask=True,
|
| 64 |
+
add_special_tokens=True,
|
| 65 |
+
return_tensors="pt",
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
output_encoding = self.tokenizer(
|
| 69 |
+
data_row["output_text"],
|
| 70 |
+
max_length=self.target_max_token_len,
|
| 71 |
+
padding="max_length",
|
| 72 |
+
truncation=True,
|
| 73 |
+
return_attention_mask=True,
|
| 74 |
+
add_special_tokens=True,
|
| 75 |
+
return_tensors="pt",
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
labels = output_encoding["input_ids"]
|
| 79 |
+
labels[
|
| 80 |
+
labels == 0
|
| 81 |
+
] = -100
|
| 82 |
+
|
| 83 |
+
return dict(
|
| 84 |
+
keywords=data_row["keywords"],
|
| 85 |
+
text=data_row["text"],
|
| 86 |
+
keywords_input_ids=input_encoding["input_ids"].flatten(),
|
| 87 |
+
keywords_attention_mask=input_encoding["attention_mask"].flatten(),
|
| 88 |
+
labels=labels.flatten(),
|
| 89 |
+
labels_attention_mask=output_encoding["attention_mask"].flatten(),
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class PLDataModule(LightningDataModule):
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
train_df: pd.DataFrame,
|
| 97 |
+
test_df: pd.DataFrame,
|
| 98 |
+
tokenizer: T5Tokenizer,
|
| 99 |
+
source_max_token_len: int = 512,
|
| 100 |
+
target_max_token_len: int = 512,
|
| 101 |
+
batch_size: int = 4,
|
| 102 |
+
split: float = 0.1
|
| 103 |
+
):
|
| 104 |
+
"""
|
| 105 |
+
:param data_df:
|
| 106 |
+
:param tokenizer:
|
| 107 |
+
:param source_max_token_len:
|
| 108 |
+
:param target_max_token_len:
|
| 109 |
+
:param batch_size:
|
| 110 |
+
:param split:
|
| 111 |
+
"""
|
| 112 |
+
super().__init__()
|
| 113 |
+
self.train_df = train_df
|
| 114 |
+
self.test_df = test_df
|
| 115 |
+
self.split = split
|
| 116 |
+
self.batch_size = batch_size
|
| 117 |
+
self.target_max_token_len = target_max_token_len
|
| 118 |
+
self.source_max_token_len = source_max_token_len
|
| 119 |
+
self.tokenizer = tokenizer
|
| 120 |
+
|
| 121 |
+
def setup(self, stage=None):
|
| 122 |
+
self.train_dataset = DataModule(
|
| 123 |
+
self.train_df,
|
| 124 |
+
self.tokenizer,
|
| 125 |
+
self.source_max_token_len,
|
| 126 |
+
self.target_max_token_len,
|
| 127 |
+
)
|
| 128 |
+
self.test_dataset = DataModule(
|
| 129 |
+
self.test_df,
|
| 130 |
+
self.tokenizer,
|
| 131 |
+
self.source_max_token_len,
|
| 132 |
+
self.target_max_token_len,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
def train_dataloader(self):
|
| 136 |
+
""" training dataloader """
|
| 137 |
+
return DataLoader(
|
| 138 |
+
self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=2
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
def test_dataloader(self):
|
| 142 |
+
""" test dataloader """
|
| 143 |
+
return DataLoader(
|
| 144 |
+
self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=2
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
def val_dataloader(self):
|
| 148 |
+
""" validation dataloader """
|
| 149 |
+
return DataLoader(
|
| 150 |
+
self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=2
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class LightningModel(LightningModule):
|
| 155 |
+
""" PyTorch Lightning Model class"""
|
| 156 |
+
|
| 157 |
+
def __init__(self, tokenizer, model, output: str = "outputs"):
|
| 158 |
+
"""
|
| 159 |
+
initiates a PyTorch Lightning Model
|
| 160 |
+
Args:
|
| 161 |
+
tokenizer : T5 tokenizer
|
| 162 |
+
model : T5 model
|
| 163 |
+
output (str, optional): output directory to save model checkpoints. Defaults to "outputs".
|
| 164 |
+
"""
|
| 165 |
+
super().__init__()
|
| 166 |
+
self.model = model
|
| 167 |
+
self.tokenizer = tokenizer
|
| 168 |
+
self.output = output
|
| 169 |
+
# self.val_acc = Accuracy()
|
| 170 |
+
# self.train_acc = Accuracy()
|
| 171 |
+
|
| 172 |
+
def forward(self, input_ids, attention_mask, decoder_attention_mask, labels=None):
|
| 173 |
+
""" forward step """
|
| 174 |
+
output = self.model(
|
| 175 |
+
input_ids,
|
| 176 |
+
attention_mask=attention_mask,
|
| 177 |
+
labels=labels,
|
| 178 |
+
decoder_attention_mask=decoder_attention_mask,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
return output.loss, output.logits
|
| 182 |
+
|
| 183 |
+
def training_step(self, batch, batch_size):
|
| 184 |
+
""" training step """
|
| 185 |
+
input_ids = batch["keywords_input_ids"]
|
| 186 |
+
attention_mask = batch["keywords_attention_mask"]
|
| 187 |
+
labels = batch["labels"]
|
| 188 |
+
labels_attention_mask = batch["labels_attention_mask"]
|
| 189 |
+
|
| 190 |
+
loss, outputs = self(
|
| 191 |
+
input_ids=input_ids,
|
| 192 |
+
attention_mask=attention_mask,
|
| 193 |
+
decoder_attention_mask=labels_attention_mask,
|
| 194 |
+
labels=labels,
|
| 195 |
+
)
|
| 196 |
+
self.log("train_loss", loss, prog_bar=True, logger=True)
|
| 197 |
+
return loss
|
| 198 |
+
|
| 199 |
+
def validation_step(self, batch, batch_size):
|
| 200 |
+
""" validation step """
|
| 201 |
+
input_ids = batch["keywords_input_ids"]
|
| 202 |
+
attention_mask = batch["keywords_attention_mask"]
|
| 203 |
+
labels = batch["labels"]
|
| 204 |
+
labels_attention_mask = batch["labels_attention_mask"]
|
| 205 |
+
|
| 206 |
+
loss, outputs = self(
|
| 207 |
+
input_ids=input_ids,
|
| 208 |
+
attention_mask=attention_mask,
|
| 209 |
+
decoder_attention_mask=labels_attention_mask,
|
| 210 |
+
labels=labels,
|
| 211 |
+
)
|
| 212 |
+
self.log("val_loss", loss, prog_bar=True, logger=True)
|
| 213 |
+
return loss
|
| 214 |
+
|
| 215 |
+
def test_step(self, batch, batch_size):
|
| 216 |
+
""" test step """
|
| 217 |
+
input_ids = batch["keywords_input_ids"]
|
| 218 |
+
attention_mask = batch["keywords_attention_mask"]
|
| 219 |
+
labels = batch["labels"]
|
| 220 |
+
labels_attention_mask = batch["labels_attention_mask"]
|
| 221 |
+
|
| 222 |
+
loss, outputs = self(
|
| 223 |
+
input_ids=input_ids,
|
| 224 |
+
attention_mask=attention_mask,
|
| 225 |
+
decoder_attention_mask=labels_attention_mask,
|
| 226 |
+
labels=labels,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
self.log("test_loss", loss, prog_bar=True, logger=True)
|
| 230 |
+
return loss
|
| 231 |
+
|
| 232 |
+
def configure_optimizers(self):
|
| 233 |
+
""" configure optimizers """
|
| 234 |
+
model = self.model
|
| 235 |
+
no_decay = ["bias", "LayerNorm.weight"]
|
| 236 |
+
optimizer_grouped_parameters = [
|
| 237 |
+
{
|
| 238 |
+
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
| 239 |
+
"weight_decay": self.hparams.weight_decay,
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
| 243 |
+
"weight_decay": 0.0,
|
| 244 |
+
},
|
| 245 |
+
]
|
| 246 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
|
| 247 |
+
self.opt = optimizer
|
| 248 |
+
return [optimizer]
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
class Summarization:
|
| 252 |
+
""" Custom Summarization class """
|
| 253 |
+
|
| 254 |
+
def __init__(self) -> None:
|
| 255 |
+
""" initiates Summarization class """
|
| 256 |
+
pass
|
| 257 |
+
|
| 258 |
+
def from_pretrained(self, model_name="t5-base") -> None:
|
| 259 |
+
"""
|
| 260 |
+
loads T5/MT5 Model model for training/finetuning
|
| 261 |
+
Args:
|
| 262 |
+
model_name (str, optional): exact model architecture name, "t5-base" or "t5-large". Defaults to "t5-base".
|
| 263 |
+
"""
|
| 264 |
+
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_name}")
|
| 265 |
+
self.model = T5ForConditionalGeneration.from_pretrained(
|
| 266 |
+
f"{model_name}", return_dict=True
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
def train(
|
| 270 |
+
self,
|
| 271 |
+
train_df: pd.DataFrame,
|
| 272 |
+
eval_df: pd.DataFrame,
|
| 273 |
+
source_max_token_len: int = 512,
|
| 274 |
+
target_max_token_len: int = 512,
|
| 275 |
+
batch_size: int = 8,
|
| 276 |
+
max_epochs: int = 5,
|
| 277 |
+
use_gpu: bool = True,
|
| 278 |
+
outputdir: str = "model",
|
| 279 |
+
early_stopping_patience_epochs: int = 0, # 0 to disable early stopping feature
|
| 280 |
+
):
|
| 281 |
+
"""
|
| 282 |
+
trains T5/MT5 model on custom dataset
|
| 283 |
+
Args:
|
| 284 |
+
train_df (pd.DataFrame): training datarame. Dataframe must have 2 column --> "input_text" and "output_text"
|
| 285 |
+
eval_df ([type], optional): validation datarame. Dataframe must have 2 column --> "input_text" and
|
| 286 |
+
"output_text"
|
| 287 |
+
source_max_token_len (int, optional): max token length of source text. Defaults to 512.
|
| 288 |
+
target_max_token_len (int, optional): max token length of target text. Defaults to 512.
|
| 289 |
+
batch_size (int, optional): batch size. Defaults to 8.
|
| 290 |
+
max_epochs (int, optional): max number of epochs. Defaults to 5.
|
| 291 |
+
use_gpu (bool, optional): if True, model uses gpu for training. Defaults to True.
|
| 292 |
+
outputdir (str, optional): output directory to save model checkpoints. Defaults to "outputs".
|
| 293 |
+
early_stopping_patience_epochs (int, optional): monitors val_loss on epoch end and stops training,
|
| 294 |
+
if val_loss does not improve after the specied number of epochs. set 0 to disable early stopping.
|
| 295 |
+
Defaults to 0 (disabled)
|
| 296 |
+
"""
|
| 297 |
+
self.target_max_token_len = target_max_token_len
|
| 298 |
+
self.data_module = PLDataModule(
|
| 299 |
+
train_df,
|
| 300 |
+
eval_df,
|
| 301 |
+
self.tokenizer,
|
| 302 |
+
batch_size=batch_size,
|
| 303 |
+
source_max_token_len=source_max_token_len,
|
| 304 |
+
target_max_token_len=target_max_token_len,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
self.T5Model = LightningModel(
|
| 308 |
+
tokenizer=self.tokenizer, model=self.model, output=outputdir
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
# checkpoint_callback = ModelCheckpoint(
|
| 312 |
+
# dirpath="checkpoints",
|
| 313 |
+
# filename="best-checkpoint-{epoch}-{train_loss:.2f}",
|
| 314 |
+
# save_top_k=-1,
|
| 315 |
+
# verbose=True,
|
| 316 |
+
# monitor="train_loss",
|
| 317 |
+
# mode="min",
|
| 318 |
+
# )
|
| 319 |
+
|
| 320 |
+
logger = MLFlowLogger(experiment_name="Summarization")
|
| 321 |
+
|
| 322 |
+
early_stop_callback = (
|
| 323 |
+
[
|
| 324 |
+
EarlyStopping(
|
| 325 |
+
monitor="val_loss",
|
| 326 |
+
min_delta=0.00,
|
| 327 |
+
patience=early_stopping_patience_epochs,
|
| 328 |
+
verbose=True,
|
| 329 |
+
mode="min",
|
| 330 |
+
)
|
| 331 |
+
]
|
| 332 |
+
if early_stopping_patience_epochs > 0
|
| 333 |
+
else None
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
gpus = 1 if use_gpu else 0
|
| 337 |
+
|
| 338 |
+
trainer = pl.Trainer(
|
| 339 |
+
logger=logger,
|
| 340 |
+
callbacks=early_stop_callback,
|
| 341 |
+
max_epochs=max_epochs,
|
| 342 |
+
gpus=gpus,
|
| 343 |
+
progress_bar_refresh_rate=5,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
trainer.fit(self.T5Model, self.data_module)
|
| 347 |
+
|
| 348 |
+
def load_model(
|
| 349 |
+
self, model_dir: str = "model", use_gpu: bool = False
|
| 350 |
+
):
|
| 351 |
+
"""
|
| 352 |
+
loads a checkpoint for inferencing/prediction
|
| 353 |
+
Args:
|
| 354 |
+
model_type (str, optional): "t5" or "mt5". Defaults to "t5".
|
| 355 |
+
model_dir (str, optional): path to model directory. Defaults to "outputs".
|
| 356 |
+
use_gpu (bool, optional): if True, model uses gpu for inferencing/prediction. Defaults to True.
|
| 357 |
+
"""
|
| 358 |
+
self.model = T5ForConditionalGeneration.from_pretrained(f"{model_dir}")
|
| 359 |
+
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_dir}")
|
| 360 |
+
|
| 361 |
+
if use_gpu:
|
| 362 |
+
if torch.cuda.is_available():
|
| 363 |
+
self.device = torch.device("cuda")
|
| 364 |
+
else:
|
| 365 |
+
raise Exception("exception ---> no gpu found. set use_gpu=False, to use CPU")
|
| 366 |
+
else:
|
| 367 |
+
self.device = torch.device("cpu")
|
| 368 |
+
|
| 369 |
+
self.model = self.model.to(self.device)
|
| 370 |
+
|
| 371 |
+
def save_model(
|
| 372 |
+
self,
|
| 373 |
+
model_dir="model"
|
| 374 |
+
):
|
| 375 |
+
"""
|
| 376 |
+
Save model to dir
|
| 377 |
+
:param model_dir:
|
| 378 |
+
:return: model is saved
|
| 379 |
+
"""
|
| 380 |
+
path = f"{model_dir}"
|
| 381 |
+
self.tokenizer.save_pretrained(path)
|
| 382 |
+
self.model.save_pretrained(path)
|
| 383 |
+
|
| 384 |
+
def predict(
|
| 385 |
+
self,
|
| 386 |
+
source_text: str,
|
| 387 |
+
max_length: int = 512,
|
| 388 |
+
num_return_sequences: int = 1,
|
| 389 |
+
num_beams: int = 2,
|
| 390 |
+
top_k: int = 50,
|
| 391 |
+
top_p: float = 0.95,
|
| 392 |
+
do_sample: bool = True,
|
| 393 |
+
repetition_penalty: float = 2.5,
|
| 394 |
+
length_penalty: float = 1.0,
|
| 395 |
+
early_stopping: bool = True,
|
| 396 |
+
skip_special_tokens: bool = True,
|
| 397 |
+
clean_up_tokenization_spaces: bool = True,
|
| 398 |
+
):
|
| 399 |
+
"""
|
| 400 |
+
generates prediction for T5/MT5 model
|
| 401 |
+
Args:
|
| 402 |
+
source_text (str): any text for generating predictions
|
| 403 |
+
max_length (int, optional): max token length of prediction. Defaults to 512.
|
| 404 |
+
num_return_sequences (int, optional): number of predictions to be returned. Defaults to 1.
|
| 405 |
+
num_beams (int, optional): number of beams. Defaults to 2.
|
| 406 |
+
top_k (int, optional): Defaults to 50.
|
| 407 |
+
top_p (float, optional): Defaults to 0.95.
|
| 408 |
+
do_sample (bool, optional): Defaults to True.
|
| 409 |
+
repetition_penalty (float, optional): Defaults to 2.5.
|
| 410 |
+
length_penalty (float, optional): Defaults to 1.0.
|
| 411 |
+
early_stopping (bool, optional): Defaults to True.
|
| 412 |
+
skip_special_tokens (bool, optional): Defaults to True.
|
| 413 |
+
clean_up_tokenization_spaces (bool, optional): Defaults to True.
|
| 414 |
+
Returns:
|
| 415 |
+
list[str]: returns predictions
|
| 416 |
+
"""
|
| 417 |
+
input_ids = self.tokenizer.encode(
|
| 418 |
+
source_text, return_tensors="pt", add_special_tokens=True
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
input_ids = input_ids.to(self.device)
|
| 422 |
+
generated_ids = self.model.generate(
|
| 423 |
+
input_ids=input_ids,
|
| 424 |
+
num_beams=num_beams,
|
| 425 |
+
max_length=max_length,
|
| 426 |
+
repetition_penalty=repetition_penalty,
|
| 427 |
+
length_penalty=length_penalty,
|
| 428 |
+
early_stopping=early_stopping,
|
| 429 |
+
top_p=top_p,
|
| 430 |
+
top_k=top_k,
|
| 431 |
+
num_return_sequences=num_return_sequences,
|
| 432 |
+
)
|
| 433 |
+
preds = [
|
| 434 |
+
self.tokenizer.decode(
|
| 435 |
+
g,
|
| 436 |
+
skip_special_tokens=skip_special_tokens,
|
| 437 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 438 |
+
)
|
| 439 |
+
for g in generated_ids
|
| 440 |
+
]
|
| 441 |
+
return preds
|