Spaces:
Runtime error
Runtime error
added params
Browse files- requirements.txt +3 -3
- src/models/model.py +1 -3
- src/models/predict_model.py +3 -3
- tox.ini +1 -1
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
numpy==1.
|
| 2 |
-
datasets==1.
|
| 3 |
pytorch_lightning==1.3.5
|
| 4 |
-
transformers==4.
|
| 5 |
torch==1.9.0+cu111
|
| 6 |
dagshub==0.1.6
|
| 7 |
pandas==1.2.4
|
|
|
|
| 1 |
+
numpy==1.21.1
|
| 2 |
+
datasets==1.10.2
|
| 3 |
pytorch_lightning==1.3.5
|
| 4 |
+
transformers==4.9.0
|
| 5 |
torch==1.9.0+cu111
|
| 6 |
dagshub==0.1.6
|
| 7 |
pandas==1.2.4
|
src/models/model.py
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
-
import time
|
| 2 |
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
from dagshub.pytorch_lightning import DAGsHubLogger
|
| 6 |
from transformers import (
|
|
@@ -319,7 +317,7 @@ class Summarization:
|
|
| 319 |
|
| 320 |
self.T5Model = LightningModel(
|
| 321 |
tokenizer=self.tokenizer, model=self.model, output=outputdir,
|
| 322 |
-
learning_rate=learning_rate,adam_epsilon=adam_epsilon
|
| 323 |
)
|
| 324 |
|
| 325 |
MLlogger = MLFlowLogger(experiment_name="Summarization",
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from dagshub.pytorch_lightning import DAGsHubLogger
|
| 4 |
from transformers import (
|
|
|
|
| 317 |
|
| 318 |
self.T5Model = LightningModel(
|
| 319 |
tokenizer=self.tokenizer, model=self.model, output=outputdir,
|
| 320 |
+
learning_rate=learning_rate, adam_epsilon=adam_epsilon
|
| 321 |
)
|
| 322 |
|
| 323 |
MLlogger = MLFlowLogger(experiment_name="Summarization",
|
src/models/predict_model.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
from src.data.make_dataset import make_dataset
|
| 2 |
from .model import Summarization
|
| 3 |
import pandas as pd
|
| 4 |
|
|
|
|
| 5 |
def predict_model(text):
|
| 6 |
"""
|
| 7 |
Predict the summary of the given text.
|
|
@@ -11,8 +11,8 @@ def predict_model(text):
|
|
| 11 |
pre_summary = model.predict(text)
|
| 12 |
return pre_summary
|
| 13 |
|
| 14 |
-
|
| 15 |
if __name__ == '__main__':
|
| 16 |
text = pd.load_csv('data/processed/test.csv')['input_text'][0]
|
| 17 |
pre_summary = predict_model(text)
|
| 18 |
-
print(pre_summary)
|
|
|
|
|
|
|
| 1 |
from .model import Summarization
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
+
|
| 5 |
def predict_model(text):
|
| 6 |
"""
|
| 7 |
Predict the summary of the given text.
|
|
|
|
| 11 |
pre_summary = model.predict(text)
|
| 12 |
return pre_summary
|
| 13 |
|
| 14 |
+
|
| 15 |
if __name__ == '__main__':
|
| 16 |
text = pd.load_csv('data/processed/test.csv')['input_text'][0]
|
| 17 |
pre_summary = predict_model(text)
|
| 18 |
+
print(pre_summary)
|
tox.ini
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
[flake8]
|
| 2 |
-
max-line-length =
|
| 3 |
max-complexity = 10
|
|
|
|
| 1 |
[flake8]
|
| 2 |
+
max-line-length = 160
|
| 3 |
max-complexity = 10
|