Spaces:
Build error
Build error
Upload folder using huggingface_hub
Browse files- .gitignore +10 -0
- .python-version +1 -0
- README.md +38 -7
- app.py +309 -0
- main.py +6 -0
- pyproject.toml +7 -0
- requirements.txt +19 -0
.gitignore
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python-generated files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[oc]
|
| 4 |
+
build/
|
| 5 |
+
dist/
|
| 6 |
+
wheels/
|
| 7 |
+
*.egg-info
|
| 8 |
+
|
| 9 |
+
# Virtual environments
|
| 10 |
+
.venv
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.13
|
README.md
CHANGED
|
@@ -1,12 +1,43 @@
|
|
| 1 |
---
|
| 2 |
-
title: HY
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
|
| 8 |
app_file: app.py
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: HY-WorldPlay
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
python_version: 3.10
|
| 8 |
app_file: app.py
|
| 9 |
+
hardware: zero-gpu
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: HY-World 1.5 - Interactive World Modeling
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# HY-WorldPlay (HunyuanWorld 1.5)
|
| 15 |
+
|
| 16 |
+
This Space demonstrates **HY-WorldPlay**: a streaming video diffusion model for real-time interactive world modeling.
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
- **Base Model**: HunyuanVideo-1.5
|
| 20 |
+
- **Architecture**: Latent Video Diffusion with Dual Action Representation
|
| 21 |
+
- **Capability**: Generates long-horizon streaming video with geometric consistency.
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
1. **Prompt**: Enter a text description of the scene.
|
| 25 |
+
2. **Image**: (Optional) Upload a starting image for Image-to-Video generation.
|
| 26 |
+
3. **Camera Path**: Upload a JSON file defining the camera trajectory (Pose).
|
| 27 |
+
- *Note*: You can find example pose files in the official repository or use the default provided in the demo if implemented.
|
| 28 |
+
4. **Generate**: Click generate to create the video.
|
| 29 |
+
|
| 30 |
+
## Notes
|
| 31 |
+
- This Space uses **ZeroGPU** for inference.
|
| 32 |
+
- The first run might take longer to download the model weights (~30GB+).
|
| 33 |
+
- The model is running in **Bidirectional** mode by default for quality.
|
| 34 |
+
|
| 35 |
+
## Citation
|
| 36 |
+
```bibtex
|
| 37 |
+
@article{worldplay2025,
|
| 38 |
+
title={WorldPlay: Towards Long-Term Geometric Consistency for Real-Time Interactive World Model},
|
| 39 |
+
author={Wenqiang Sun and Haiyu Zhang and Haoyuan Wang and Junta Wu and Zehan Wang and Zhenwei Wang and Yunhong Wang and Jun Zhang and Tengfei Wang and Chunchao Guo},
|
| 40 |
+
year={2025},
|
| 41 |
+
journal={arXiv preprint}
|
| 42 |
+
}
|
| 43 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import shutil
|
| 4 |
+
import tempfile
|
| 5 |
+
import argparse
|
| 6 |
+
import subprocess
|
| 7 |
+
import json
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import spaces
|
| 11 |
+
import gradio as gr
|
| 12 |
+
from huggingface_hub import snapshot_download
|
| 13 |
+
|
| 14 |
+
# Clone the repository if not already present
|
| 15 |
+
REPO_URL = "https://github.com/Tencent-Hunyuan/HY-WorldPlay.git"
|
| 16 |
+
REPO_DIR = "HY-WorldPlay"
|
| 17 |
+
|
| 18 |
+
if not os.path.exists(REPO_DIR):
|
| 19 |
+
print(f"Cloning {REPO_URL}...")
|
| 20 |
+
subprocess.run(["git", "clone", REPO_URL, REPO_DIR], check=True)
|
| 21 |
+
|
| 22 |
+
sys.path.append(os.path.abspath(REPO_DIR))
|
| 23 |
+
|
| 24 |
+
# Now importing specific modules from the cloned repo
|
| 25 |
+
try:
|
| 26 |
+
from hyvideo.pipelines.worldplay_video_pipeline import HunyuanVideo_1_5_Pipeline
|
| 27 |
+
from hyvideo.commons.parallel_states import initialize_parallel_state
|
| 28 |
+
from hyvideo.commons.infer_state import initialize_infer_state
|
| 29 |
+
except ImportError as e:
|
| 30 |
+
print(f"Error importing hyvideo: {e}")
|
| 31 |
+
print("Dependencies might be missing. Ensure requirements.txt is correct.")
|
| 32 |
+
|
| 33 |
+
# Mapping for pose actions if needed
|
| 34 |
+
mapping = {
|
| 35 |
+
(0,0,0,0): 0,
|
| 36 |
+
(1,0,0,0): 1, # forward
|
| 37 |
+
(0,1,0,0): 2, # backward
|
| 38 |
+
(0,0,1,0): 3, # right
|
| 39 |
+
(0,0,0,1): 4, # left
|
| 40 |
+
(1,0,1,0): 5,
|
| 41 |
+
(1,0,0,1): 6,
|
| 42 |
+
(0,1,1,0): 7,
|
| 43 |
+
(0,1,0,1): 8,
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
# --- Utility Functions adapted from generate.py ---
|
| 47 |
+
|
| 48 |
+
def one_hot_to_one_dimension(one_hot):
|
| 49 |
+
y = torch.tensor([mapping[tuple(row.tolist())] for row in one_hot])
|
| 50 |
+
return y
|
| 51 |
+
|
| 52 |
+
def pose_to_input(pose_json_path, latent_chunk_num, tps=False):
|
| 53 |
+
# This function is adapted to handle the JSON structure used in the repo
|
| 54 |
+
import json
|
| 55 |
+
from scipy.spatial.transform import Rotation as R
|
| 56 |
+
|
| 57 |
+
pose_json = json.load(open(pose_json_path, 'r'))
|
| 58 |
+
pose_keys = list(pose_json.keys())
|
| 59 |
+
intrinsic_list = []
|
| 60 |
+
w2c_list = []
|
| 61 |
+
|
| 62 |
+
# Simple sort to ensure chronological order if keys are timestamps or numbered
|
| 63 |
+
pose_keys.sort()
|
| 64 |
+
|
| 65 |
+
# We need to make sure we don't go out of bounds if JSON has fewer frames
|
| 66 |
+
iterations = min(latent_chunk_num, len(pose_keys))
|
| 67 |
+
|
| 68 |
+
for i in range(iterations):
|
| 69 |
+
t_key = pose_keys[i]
|
| 70 |
+
c2w = np.array(pose_json[t_key]["extrinsic"])
|
| 71 |
+
w2c = np.linalg.inv(c2w)
|
| 72 |
+
w2c_list.append(w2c)
|
| 73 |
+
intrinsic = np.array(pose_json[t_key]["K"])
|
| 74 |
+
intrinsic[0, 0] /= intrinsic[0, 2] * 2
|
| 75 |
+
intrinsic[1, 1] /= intrinsic[1, 2] * 2
|
| 76 |
+
intrinsic[0, 2] = 0.5
|
| 77 |
+
intrinsic[1, 2] = 0.5
|
| 78 |
+
intrinsic_list.append(intrinsic)
|
| 79 |
+
|
| 80 |
+
# Pad if we have fewer frames than requested chunks
|
| 81 |
+
if len(w2c_list) < latent_chunk_num:
|
| 82 |
+
# Repeat last frame
|
| 83 |
+
last_w2c = w2c_list[-1]
|
| 84 |
+
last_intrinsic = intrinsic_list[-1]
|
| 85 |
+
for _ in range(latent_chunk_num - len(w2c_list)):
|
| 86 |
+
w2c_list.append(last_w2c)
|
| 87 |
+
intrinsic_list.append(last_intrinsic)
|
| 88 |
+
|
| 89 |
+
w2c_list = np.array(w2c_list)
|
| 90 |
+
intrinsic_list = torch.tensor(np.array(intrinsic_list))
|
| 91 |
+
|
| 92 |
+
c2ws = np.linalg.inv(w2c_list)
|
| 93 |
+
C_inv = np.linalg.inv(c2ws[:-1])
|
| 94 |
+
relative_c2w = np.zeros_like(c2ws)
|
| 95 |
+
relative_c2w[0, ...] = c2ws[0, ...]
|
| 96 |
+
relative_c2w[1:, ...] = C_inv @ c2ws[1:, ...]
|
| 97 |
+
trans_one_hot = np.zeros((relative_c2w.shape[0], 4), dtype=np.int32)
|
| 98 |
+
rotate_one_hot = np.zeros((relative_c2w.shape[0], 4), dtype=np.int32)
|
| 99 |
+
|
| 100 |
+
move_norm_valid = 0.0001
|
| 101 |
+
for i in range(1, relative_c2w.shape[0]):
|
| 102 |
+
move_dirs = relative_c2w[i, :3, 3]
|
| 103 |
+
move_norms = np.linalg.norm(move_dirs)
|
| 104 |
+
if move_norms > move_norm_valid:
|
| 105 |
+
move_norm_dirs = move_dirs / move_norms
|
| 106 |
+
angles_rad = np.arccos(move_norm_dirs.clip(-1.0, 1.0))
|
| 107 |
+
trans_angles_deg = angles_rad * (180.0 / np.pi)
|
| 108 |
+
else:
|
| 109 |
+
trans_angles_deg = np.zeros(3)
|
| 110 |
+
|
| 111 |
+
R_rel = relative_c2w[i, :3, :3]
|
| 112 |
+
r = R.from_matrix(R_rel)
|
| 113 |
+
rot_angles_deg = r.as_euler('xyz', degrees=True)
|
| 114 |
+
|
| 115 |
+
if move_norms > move_norm_valid:
|
| 116 |
+
if (not tps) or (tps == True and abs(rot_angles_deg[1]) < 5e-2 and abs(rot_angles_deg[0]) < 5e-2):
|
| 117 |
+
if trans_angles_deg[2] < 60:
|
| 118 |
+
trans_one_hot[i, 0] = 1
|
| 119 |
+
elif trans_angles_deg[2] > 120:
|
| 120 |
+
trans_one_hot[i, 1] = 1
|
| 121 |
+
if trans_angles_deg[0] < 60:
|
| 122 |
+
trans_one_hot[i, 2] = 1
|
| 123 |
+
elif trans_angles_deg[0] > 120:
|
| 124 |
+
trans_one_hot[i, 3] = 1
|
| 125 |
+
|
| 126 |
+
if rot_angles_deg[1] > 5e-2:
|
| 127 |
+
rotate_one_hot[i, 0] = 1
|
| 128 |
+
elif rot_angles_deg[1] < -5e-2:
|
| 129 |
+
rotate_one_hot[i, 1] = 1
|
| 130 |
+
if rot_angles_deg[0] > 5e-2:
|
| 131 |
+
rotate_one_hot[i, 2] = 1
|
| 132 |
+
elif rot_angles_deg[0] < -5e-2:
|
| 133 |
+
rotate_one_hot[i, 3] = 1
|
| 134 |
+
|
| 135 |
+
trans_one_hot = torch.tensor(trans_one_hot)
|
| 136 |
+
rotate_one_hot = torch.tensor(rotate_one_hot)
|
| 137 |
+
|
| 138 |
+
trans_one_label = one_hot_to_one_dimension(trans_one_hot)
|
| 139 |
+
rotate_one_label = one_hot_to_one_dimension(rotate_one_hot)
|
| 140 |
+
action_one_label = trans_one_label * 9 + rotate_one_label
|
| 141 |
+
|
| 142 |
+
return torch.tensor(w2c_list), torch.tensor(intrinsic_list), action_one_label
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
# --- Model Loading and Inference ---
|
| 146 |
+
|
| 147 |
+
MODEL_PATH = "tencent/HunyuanVideo-1.5"
|
| 148 |
+
ACTION_CKPT = "tencent/HY-WorldPlay"
|
| 149 |
+
|
| 150 |
+
# Global pipeline variable
|
| 151 |
+
pipe = None
|
| 152 |
+
|
| 153 |
+
def load_model():
|
| 154 |
+
global pipe
|
| 155 |
+
if pipe is None:
|
| 156 |
+
print("Loading Model...")
|
| 157 |
+
# Ensure we have weights
|
| 158 |
+
# We might rely on the diffusers pipeline to download, but for custom pipeline it often expects local path
|
| 159 |
+
# Let's use snapshot_download to be safe and clear
|
| 160 |
+
|
| 161 |
+
# Check if we are in an environment where we can download
|
| 162 |
+
model_dir = snapshot_download(repo_id=MODEL_PATH, allow_patterns=["*.safetensors", "*.json", "*.txt"])
|
| 163 |
+
action_dir = snapshot_download(repo_id=ACTION_CKPT) # Downloads everything from HY-WorldPlay repo (checkpoints)
|
| 164 |
+
|
| 165 |
+
# We need to pinpoint the specific subfolder for action checkpoint if it has one
|
| 166 |
+
# Based on user description: "ar_distilled_action_model", "bidirectional_model", etc.
|
| 167 |
+
# Let's assume we use bidirectional for better quality or whatever default is best
|
| 168 |
+
# The user provided paths like "ar_model", "bidirectional_model".
|
| 169 |
+
# Let's use bidirectional_model from the snapshot.
|
| 170 |
+
action_subpath = os.path.join(action_dir, "bidirectional_model")
|
| 171 |
+
|
| 172 |
+
# Configs from args
|
| 173 |
+
transformer_dtype = torch.bfloat16
|
| 174 |
+
|
| 175 |
+
# Initialize parallel state (for single GPU usually world_size=1)
|
| 176 |
+
# Check if initialized
|
| 177 |
+
if not torch.distributed.is_initialized():
|
| 178 |
+
initialize_parallel_state(sp=1)
|
| 179 |
+
|
| 180 |
+
pipe = HunyuanVideo_1_5_Pipeline.create_pipeline(
|
| 181 |
+
pretrained_model_name_or_path=model_dir,
|
| 182 |
+
transformer_version="480p_i2v", # Hardcoded based on provided args in snippets
|
| 183 |
+
enable_offloading=True,
|
| 184 |
+
enable_group_offloading=True,
|
| 185 |
+
create_sr_pipeline=True, # Enable SR by default
|
| 186 |
+
force_sparse_attn=False,
|
| 187 |
+
transformer_dtype=transformer_dtype,
|
| 188 |
+
action_ckpt=action_subpath,
|
| 189 |
+
)
|
| 190 |
+
print("Model Loaded Successfully!")
|
| 191 |
+
return pipe
|
| 192 |
+
|
| 193 |
+
@spaces.GPU(duration=300)
|
| 194 |
+
def generate(prompt, image_input, pose_json, seed, num_inference_steps, video_length):
|
| 195 |
+
pipeline = load_model()
|
| 196 |
+
|
| 197 |
+
# Handle Pose JSON
|
| 198 |
+
pose_path = None
|
| 199 |
+
if pose_json is not None:
|
| 200 |
+
pose_path = pose_json.name
|
| 201 |
+
else:
|
| 202 |
+
# Create a default forward movement pose if not provided
|
| 203 |
+
default_pose_content = {
|
| 204 |
+
"0": {
|
| 205 |
+
"extrinsic": [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]],
|
| 206 |
+
"K": [[500.0, 0.0, 400.0], [0.0, 500.0, 240.0], [0.0, 0.0, 1.0]]
|
| 207 |
+
}
|
| 208 |
+
}
|
| 209 |
+
# Expand for a few frames to simulate forward movement
|
| 210 |
+
for i in range(1, 16):
|
| 211 |
+
# Move forward along Z (just a dummy generic forward)
|
| 212 |
+
# In camera conventions often Z is forward or -Z.
|
| 213 |
+
# Here we just keep static as safe default or minimal drift
|
| 214 |
+
default_pose_content[str(i)] = default_pose_content["0"]
|
| 215 |
+
|
| 216 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as tmp_json:
|
| 217 |
+
json.dump(default_pose_content, tmp_json)
|
| 218 |
+
pose_path = tmp_json.name
|
| 219 |
+
|
| 220 |
+
# Prepare inputs
|
| 221 |
+
latent_chunk_num = (video_length - 1) // 4 + 1
|
| 222 |
+
|
| 223 |
+
viewmats, Ks, action = pose_to_input(pose_path, latent_chunk_num)
|
| 224 |
+
|
| 225 |
+
# Handle Image Input (I2V vs T2V)
|
| 226 |
+
extra_kwargs = {}
|
| 227 |
+
if image_input is not None:
|
| 228 |
+
extra_kwargs['reference_image'] = image_input
|
| 229 |
+
|
| 230 |
+
# Run inference
|
| 231 |
+
out = pipeline(
|
| 232 |
+
enable_sr=True,
|
| 233 |
+
prompt=prompt,
|
| 234 |
+
aspect_ratio="16:9",
|
| 235 |
+
num_inference_steps=num_inference_steps,
|
| 236 |
+
sr_num_inference_steps=None,
|
| 237 |
+
video_length=video_length,
|
| 238 |
+
negative_prompt="",
|
| 239 |
+
seed=seed,
|
| 240 |
+
output_type="pt",
|
| 241 |
+
prompt_rewrite=False,
|
| 242 |
+
return_pre_sr_video=False,
|
| 243 |
+
viewmats=viewmats.unsqueeze(0),
|
| 244 |
+
Ks=Ks.unsqueeze(0),
|
| 245 |
+
action=action.unsqueeze(0),
|
| 246 |
+
few_step=False,
|
| 247 |
+
chunk_latent_frames=16,
|
| 248 |
+
model_type="bi",
|
| 249 |
+
user_height=480,
|
| 250 |
+
user_width=832,
|
| 251 |
+
**extra_kwargs
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Save video
|
| 255 |
+
output_path = "output.mp4"
|
| 256 |
+
import imageio
|
| 257 |
+
import einops
|
| 258 |
+
|
| 259 |
+
def save_vid(video, path):
|
| 260 |
+
if video.ndim == 5:
|
| 261 |
+
video = video[0]
|
| 262 |
+
vid = (video * 255).clamp(0, 255).to(torch.uint8)
|
| 263 |
+
vid = einops.rearrange(vid, 'c f h w -> f h w c')
|
| 264 |
+
imageio.mimwrite(path, vid, fps=24)
|
| 265 |
+
|
| 266 |
+
if hasattr(out, 'sr_videos'):
|
| 267 |
+
save_vid(out.sr_videos, output_path)
|
| 268 |
+
else:
|
| 269 |
+
save_vid(out.videos, output_path)
|
| 270 |
+
|
| 271 |
+
return output_path
|
| 272 |
+
|
| 273 |
+
# --- Gradio UI ---
|
| 274 |
+
|
| 275 |
+
default_pose_json_content = """
|
| 276 |
+
{
|
| 277 |
+
"0": {
|
| 278 |
+
"extrinsic": [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
|
| 279 |
+
"K": [[500, 0, 400], [0, 500, 240], [0, 0, 1]]
|
| 280 |
+
}
|
| 281 |
+
}
|
| 282 |
+
""" # Very minimal dummy, ideally we want a real trajectory
|
| 283 |
+
|
| 284 |
+
with gr.Blocks() as app:
|
| 285 |
+
gr.Markdown("# HY-WorldPlay (HunyuanWorld 1.5) Demo")
|
| 286 |
+
gr.Markdown("Generate streaming videos with camera control using WorldPlay.")
|
| 287 |
+
|
| 288 |
+
with gr.Row():
|
| 289 |
+
with gr.Column():
|
| 290 |
+
prompt = gr.Textbox(label="Prompt", value="A cinematic shot of a forest.")
|
| 291 |
+
image = gr.Image(label="Input Image", type="filepath")
|
| 292 |
+
pose_file = gr.File(label="Camera Path JSON", file_types=[".json"])
|
| 293 |
+
seed = gr.Number(label="Seed", value=123)
|
| 294 |
+
steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=50, step=1)
|
| 295 |
+
length = gr.Slider(label="Video Length (frames)", minimum=17, maximum=129, value=65, step=16) # 16*4 + 1
|
| 296 |
+
|
| 297 |
+
submit = gr.Button("Generate")
|
| 298 |
+
|
| 299 |
+
with gr.Column():
|
| 300 |
+
output_video = gr.Video(label="Generated Video")
|
| 301 |
+
|
| 302 |
+
submit.click(
|
| 303 |
+
fn=generate,
|
| 304 |
+
inputs=[prompt, image, pose_file, seed, steps, length],
|
| 305 |
+
outputs=[output_video]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
if __name__ == "__main__":
|
| 309 |
+
app.launch()
|
main.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def main():
|
| 2 |
+
print("Hello from huggingface-hf-wordplay!")
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == "__main__":
|
| 6 |
+
main()
|
pyproject.toml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "huggingface-hf-wordplay"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.13"
|
| 7 |
+
dependencies = []
|
requirements.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/Tencent-Hunyuan/HY-WorldPlay.git
|
| 2 |
+
torch>=2.6.0
|
| 3 |
+
diffusers==0.35.0
|
| 4 |
+
transformers==4.46.0
|
| 5 |
+
huggingface-hub==0.26.1
|
| 6 |
+
gradio
|
| 7 |
+
spaces
|
| 8 |
+
peft==0.17.0
|
| 9 |
+
loguru==0.7.3
|
| 10 |
+
numpy==1.26.4
|
| 11 |
+
pillow==11.0.0
|
| 12 |
+
imageio==2.36.0
|
| 13 |
+
imageio-ffmpeg==0.5.1
|
| 14 |
+
omegaconf>=2.3.0
|
| 15 |
+
safetensors==0.4.5
|
| 16 |
+
torchvision>=0.17.0
|
| 17 |
+
scipy
|
| 18 |
+
accelerate
|
| 19 |
+
sentencepiece
|