Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,356 +1,24 @@
|
|
| 1 |
-
|
| 2 |
-
from fastapi import FastAPI, Query
|
| 3 |
from pydantic import BaseModel
|
| 4 |
-
import cloudscraper
|
| 5 |
-
from bs4 import BeautifulSoup
|
| 6 |
-
from transformers import pipeline
|
| 7 |
-
import torch
|
| 8 |
-
import re
|
| 9 |
-
import os
|
| 10 |
-
|
| 11 |
-
#os.environ["HF_HOME"] = "/home/user/huggingface"
|
| 12 |
-
#os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface"
|
| 13 |
-
|
| 14 |
-
app = FastAPI()
|
| 15 |
-
|
| 16 |
-
class ThreadResponse(BaseModel):
|
| 17 |
-
question: str
|
| 18 |
-
replies: list[str]
|
| 19 |
-
|
| 20 |
-
def clean_text(text: str) -> str:
|
| 21 |
-
text = text.strip()
|
| 22 |
-
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
|
| 23 |
-
return text
|
| 24 |
-
|
| 25 |
-
@app.get("/scrape", response_model=ThreadResponse)
|
| 26 |
-
def scrape(url: str = Query(...)):
|
| 27 |
-
scraper = cloudscraper.create_scraper()
|
| 28 |
-
response = scraper.get(url)
|
| 29 |
-
|
| 30 |
-
if response.status_code == 200:
|
| 31 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
| 32 |
-
comment_containers = soup.find_all('div', class_='post__content')
|
| 33 |
-
|
| 34 |
-
if comment_containers:
|
| 35 |
-
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
|
| 36 |
-
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
|
| 37 |
-
return ThreadResponse(question=question, replies=replies)
|
| 38 |
-
return ThreadResponse(question="", replies=[])
|
| 39 |
-
|
| 40 |
-
MODEL_NAME = "microsoft/phi-2"
|
| 41 |
-
|
| 42 |
-
# Load the text-generation pipeline once at startup
|
| 43 |
-
text_generator = pipeline(
|
| 44 |
-
"text-generation",
|
| 45 |
-
model=MODEL_NAME,
|
| 46 |
-
trust_remote_code=True,
|
| 47 |
-
device=0 if torch.cuda.is_available() else -1, # GPU if available, else CPU
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
class PromptRequest(BaseModel):
|
| 51 |
-
prompt: str
|
| 52 |
-
|
| 53 |
-
@app.post("/generate")
|
| 54 |
-
async def generate_text(request: PromptRequest):
|
| 55 |
-
# The model expects a string prompt, so pass request.prompt directly
|
| 56 |
-
outputs = text_generator(
|
| 57 |
-
request.prompt,
|
| 58 |
-
max_new_tokens=512,
|
| 59 |
-
temperature=0.7,
|
| 60 |
-
top_p=0.9,
|
| 61 |
-
do_sample=True,
|
| 62 |
-
num_return_sequences=1,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
generated_text = outputs[0]['generated_text']
|
| 66 |
-
|
| 67 |
-
# Optional: parse reasoning and content if your model uses special tags like </think>
|
| 68 |
-
if "</think>" in generated_text:
|
| 69 |
-
reasoning_content = generated_text.split("</think>")[0].strip()
|
| 70 |
-
content = generated_text.split("</think>")[1].strip()
|
| 71 |
-
else:
|
| 72 |
-
reasoning_content = ""
|
| 73 |
-
content = generated_text.strip()
|
| 74 |
-
|
| 75 |
-
return {
|
| 76 |
-
"reasoning_content": reasoning_content,
|
| 77 |
-
"generated_text": content
|
| 78 |
-
}
|
| 79 |
-
|
| 80 |
-
'''
|
| 81 |
-
|
| 82 |
-
from fastapi import FastAPI, Query, Path
|
| 83 |
-
from pydantic import BaseModel
|
| 84 |
-
import cloudscraper
|
| 85 |
-
from bs4 import BeautifulSoup
|
| 86 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, PegasusTokenizer, PegasusForConditionalGeneration
|
| 87 |
-
import torch
|
| 88 |
-
import re
|
| 89 |
-
from fastapi.responses import JSONResponse
|
| 90 |
-
from fastapi.requests import Request
|
| 91 |
-
from fastapi import status
|
| 92 |
-
from typing import List, Dict, Optional
|
| 93 |
from llama_cpp import Llama
|
| 94 |
|
| 95 |
app = FastAPI()
|
| 96 |
|
| 97 |
-
# --- Data Models ---
|
| 98 |
-
|
| 99 |
-
class ThreadResponse(BaseModel):
|
| 100 |
-
question: str
|
| 101 |
-
replies: list[str]
|
| 102 |
-
|
| 103 |
-
class PromptRequest(BaseModel):
|
| 104 |
-
prompt: str
|
| 105 |
-
|
| 106 |
-
class GenerateResponse(BaseModel):
|
| 107 |
-
reasoning_content: str
|
| 108 |
-
generated_text: str
|
| 109 |
-
|
| 110 |
-
# New model for summarization request
|
| 111 |
-
class SummarizeRequest(BaseModel):
|
| 112 |
-
replies: List[str]
|
| 113 |
-
task: str # expecting "summarisation"
|
| 114 |
-
|
| 115 |
-
# New model for summarization response
|
| 116 |
-
class SummarizeResponse(BaseModel):
|
| 117 |
-
individual_summaries: Dict[int, Dict[str, str]] # {index: {"reasoning": str, "summary": str}}
|
| 118 |
-
combined_reasoning: str
|
| 119 |
-
combined_summary: str
|
| 120 |
-
|
| 121 |
-
# --- Utility Functions ---
|
| 122 |
-
|
| 123 |
-
def clean_text(text: str) -> str:
|
| 124 |
-
text = text.strip()
|
| 125 |
-
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
|
| 126 |
-
return text
|
| 127 |
-
|
| 128 |
-
# --- Scraping Endpoint ---
|
| 129 |
-
|
| 130 |
-
@app.get("/scrape", response_model=ThreadResponse)
|
| 131 |
-
def scrape(url: str):
|
| 132 |
-
scraper = cloudscraper.create_scraper()
|
| 133 |
-
response = scraper.get(url)
|
| 134 |
-
|
| 135 |
-
if response.status_code == 200:
|
| 136 |
-
soup = BeautifulSoup(response.content, "html.parser")
|
| 137 |
-
comment_containers = soup.find_all("div", class_="post__content")
|
| 138 |
-
|
| 139 |
-
if comment_containers:
|
| 140 |
-
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
|
| 141 |
-
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
|
| 142 |
-
return ThreadResponse(question=question, replies=replies)
|
| 143 |
-
return ThreadResponse(question="", replies=[])
|
| 144 |
-
|
| 145 |
-
# --- Load DeepSeek-R1-Distill-Qwen-1.5B Model & Tokenizer ---
|
| 146 |
-
|
| 147 |
-
deepseek_model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 148 |
-
deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model_name)
|
| 149 |
-
deepseek_model = AutoModelForCausalLM.from_pretrained(deepseek_model_name)
|
| 150 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 151 |
-
deepseek_model = deepseek_model.to(device)
|
| 152 |
-
|
| 153 |
-
# --- Load T5-Large Model & Tokenizer ---
|
| 154 |
-
|
| 155 |
-
t5_model_name = "google-t5/t5-large"
|
| 156 |
-
t5_tokenizer = T5Tokenizer.from_pretrained(t5_model_name)
|
| 157 |
-
t5_model = T5ForConditionalGeneration.from_pretrained(t5_model_name)
|
| 158 |
-
t5_model = t5_model.to(device)
|
| 159 |
-
|
| 160 |
-
pegasus_model_name = "google/pegasus-large"
|
| 161 |
-
pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_model_name)
|
| 162 |
-
pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_model_name)
|
| 163 |
-
pegasus_model = pegasus_model.to(device)
|
| 164 |
-
|
| 165 |
-
qwen3_model_name = "Qwen/Qwen3-0.6B"
|
| 166 |
-
qwen3_tokenizer = AutoTokenizer.from_pretrained(qwen3_model_name)
|
| 167 |
-
qwen3_model = AutoModelForCausalLM.from_pretrained(qwen3_model_name)
|
| 168 |
-
qwen3_model = qwen3_model.to(device)
|
| 169 |
-
|
| 170 |
qwen3_gguf_llm = Llama.from_pretrained(
|
| 171 |
repo_id="unsloth/Qwen3-0.6B-GGUF",
|
| 172 |
filename="Qwen3-0.6B-BF16.gguf",
|
| 173 |
)
|
| 174 |
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
inputs = deepseek_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
| 180 |
-
outputs = deepseek_model.generate(
|
| 181 |
-
**inputs,
|
| 182 |
-
max_new_tokens=512,
|
| 183 |
-
temperature=0.7,
|
| 184 |
-
top_p=0.9,
|
| 185 |
-
do_sample=True,
|
| 186 |
-
num_return_sequences=1,
|
| 187 |
-
pad_token_id=deepseek_tokenizer.eos_token_id,
|
| 188 |
-
)
|
| 189 |
-
generated_text = deepseek_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 190 |
-
|
| 191 |
-
if "</think>" in generated_text:
|
| 192 |
-
reasoning_content, content = generated_text.split("</think>", 1)
|
| 193 |
-
return reasoning_content.strip(), content.strip()
|
| 194 |
-
else:
|
| 195 |
-
return "", generated_text.strip()
|
| 196 |
-
|
| 197 |
-
def generate_t5(prompt: str) -> (str, str):
|
| 198 |
-
inputs = t5_tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
|
| 199 |
-
outputs = t5_model.generate(
|
| 200 |
-
inputs,
|
| 201 |
-
max_length=512,
|
| 202 |
-
num_beams=4,
|
| 203 |
-
repetition_penalty=2.5,
|
| 204 |
-
length_penalty=1.0,
|
| 205 |
-
early_stopping=True,
|
| 206 |
-
)
|
| 207 |
-
generated_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 208 |
-
|
| 209 |
-
if "</think>" in generated_text:
|
| 210 |
-
reasoning_content, content = generated_text.split("</think>", 1)
|
| 211 |
-
return reasoning_content.strip(), content.strip()
|
| 212 |
-
else:
|
| 213 |
-
return "", generated_text.strip()
|
| 214 |
-
|
| 215 |
-
# --- API Endpoints ---
|
| 216 |
-
|
| 217 |
-
def generate_pegasus(prompt: str) -> (str, str):
|
| 218 |
-
# Pegasus expects raw text input (no prefix needed)
|
| 219 |
-
inputs = pegasus_tokenizer(
|
| 220 |
-
prompt,
|
| 221 |
-
return_tensors="pt",
|
| 222 |
-
truncation=True,
|
| 223 |
-
max_length=1024,
|
| 224 |
-
).to(device)
|
| 225 |
-
|
| 226 |
-
outputs = pegasus_model.generate(
|
| 227 |
-
**inputs,
|
| 228 |
-
max_new_tokens=150,
|
| 229 |
-
num_beams=4,
|
| 230 |
-
length_penalty=2.0,
|
| 231 |
-
early_stopping=True,
|
| 232 |
-
)
|
| 233 |
-
generated_text = pegasus_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 234 |
-
|
| 235 |
-
# Pegasus does not use <think> tags, so no reasoning extraction
|
| 236 |
-
return "", generated_text.strip()
|
| 237 |
-
|
| 238 |
-
def generate_qwen3(prompt: str) -> (str, str):
|
| 239 |
-
inputs = qwen3_tokenizer(
|
| 240 |
-
prompt,
|
| 241 |
-
return_tensors="pt",
|
| 242 |
-
truncation=True,
|
| 243 |
-
max_length=1024,
|
| 244 |
-
).to(device)
|
| 245 |
-
|
| 246 |
-
outputs = qwen3_model.generate(
|
| 247 |
-
**inputs,
|
| 248 |
-
max_new_tokens=512,
|
| 249 |
-
temperature=0.7,
|
| 250 |
-
top_p=0.9,
|
| 251 |
-
do_sample=True,
|
| 252 |
-
num_return_sequences=1,
|
| 253 |
-
pad_token_id=qwen3_tokenizer.eos_token_id,
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
generated_text = qwen3_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 257 |
-
|
| 258 |
-
if "</think>" in generated_text:
|
| 259 |
-
reasoning_content, content = generated_text.split("</think>", 1)
|
| 260 |
-
return reasoning_content.strip(), content.strip()
|
| 261 |
-
else:
|
| 262 |
-
return "", generated_text.strip()
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
response = qwen3_gguf_llm.create_chat_completion(
|
| 269 |
-
messages=messages,
|
| 270 |
-
max_tokens=max_tokens,
|
| 271 |
-
)
|
| 272 |
generated_text = response['choices'][0]['message']['content']
|
| 273 |
-
|
| 274 |
-
reasoning_content, content = generated_text.split("</think>", 1)
|
| 275 |
-
return reasoning_content.strip() + "</think>", content.strip()
|
| 276 |
-
else:
|
| 277 |
-
return "", generated_text.strip()
|
| 278 |
-
|
| 279 |
-
# --- New summarization endpoint ---
|
| 280 |
-
|
| 281 |
-
@app.post("/summarize_thread", response_model=SummarizeResponse)
|
| 282 |
-
async def summarize_thread(request: SummarizeRequest):
|
| 283 |
-
if request.task.lower() != "summarisation":
|
| 284 |
-
return JSONResponse(
|
| 285 |
-
status_code=400,
|
| 286 |
-
content={"error": "Unsupported task. Only 'summarisation' is supported."}
|
| 287 |
-
)
|
| 288 |
-
|
| 289 |
-
individual_summaries = {}
|
| 290 |
-
combined_reasonings = []
|
| 291 |
-
combined_summaries = []
|
| 292 |
-
|
| 293 |
-
# Summarize each reply individually
|
| 294 |
-
for idx, reply in enumerate(request.replies):
|
| 295 |
-
reasoning, summary = generate_qwen3_gguf(reply, max_tokens=256)
|
| 296 |
-
individual_summaries[idx] = {
|
| 297 |
-
"reasoning": reasoning,
|
| 298 |
-
"summary": summary
|
| 299 |
-
}
|
| 300 |
-
if reasoning:
|
| 301 |
-
combined_reasonings.append(reasoning)
|
| 302 |
-
combined_summaries.append(summary)
|
| 303 |
-
|
| 304 |
-
# Combine all individual summaries into one text
|
| 305 |
-
combined_summary_text = " ".join(combined_summaries)
|
| 306 |
-
|
| 307 |
-
# Recursively summarize combined summary if too long (optional)
|
| 308 |
-
# Here, we summarize combined summary to get final reasoning and summary
|
| 309 |
-
final_reasoning, final_summary = generate_qwen3_gguf(combined_summary_text, max_tokens=256)
|
| 310 |
-
|
| 311 |
-
# Append final reasoning to combined reasonings
|
| 312 |
-
if final_reasoning:
|
| 313 |
-
combined_reasonings.append(final_reasoning)
|
| 314 |
-
|
| 315 |
-
return SummarizeResponse(
|
| 316 |
-
individual_summaries=individual_summaries,
|
| 317 |
-
combined_reasoning="\n\n".join(combined_reasonings).strip(),
|
| 318 |
-
combined_summary=final_summary.strip()
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
@app.post("/generate/{model_name}", response_model=GenerateResponse)
|
| 324 |
-
async def generate(
|
| 325 |
-
request: PromptRequest,
|
| 326 |
-
model_name: str = Path(..., description="Model to use: 'deepseekr1-qwen', 't5-large', 'pegasus-large', 'qwen3-0.6b-hf', or 'qwen3-0.6b-gguf'")
|
| 327 |
-
):
|
| 328 |
-
if model_name == "deepseekr1-qwen":
|
| 329 |
-
reasoning, text = generate_deepseek(request.prompt)
|
| 330 |
-
elif model_name == "t5-large":
|
| 331 |
-
reasoning, text = generate_t5(request.prompt)
|
| 332 |
-
elif model_name == "pegasus-large":
|
| 333 |
-
reasoning, text = generate_pegasus(request.prompt)
|
| 334 |
-
elif model_name == "qwen3-0.6b-hf":
|
| 335 |
-
reasoning, text = generate_qwen3_hf(request.prompt)
|
| 336 |
-
elif model_name == "qwen3-0.6b-gguf":
|
| 337 |
-
reasoning, text = generate_qwen3_gguf(request.prompt)
|
| 338 |
-
else:
|
| 339 |
-
return GenerateResponse(reasoning_content="", generated_text=f"Error: Unknown model '{model_name}'.")
|
| 340 |
-
|
| 341 |
-
return GenerateResponse(reasoning_content=reasoning, generated_text=text)
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
# --- Global Exception Handler ---
|
| 346 |
-
|
| 347 |
-
@app.exception_handler(Exception)
|
| 348 |
-
async def global_exception_handler(request: Request, exc: Exception):
|
| 349 |
-
print(f"Exception: {exc}")
|
| 350 |
-
return JSONResponse(
|
| 351 |
-
status_code=status.HTTP_200_OK,
|
| 352 |
-
content={
|
| 353 |
-
"reasoning_content": "",
|
| 354 |
-
"generated_text": f"Error: {str(exc)}"
|
| 355 |
-
}
|
| 356 |
-
)
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
|
|
|
| 2 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from llama_cpp import Llama
|
| 4 |
|
| 5 |
app = FastAPI()
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
qwen3_gguf_llm = Llama.from_pretrained(
|
| 8 |
repo_id="unsloth/Qwen3-0.6B-GGUF",
|
| 9 |
filename="Qwen3-0.6B-BF16.gguf",
|
| 10 |
)
|
| 11 |
|
| 12 |
+
class PromptRequest(BaseModel):
|
| 13 |
+
prompt: str
|
| 14 |
|
| 15 |
+
class GenerateResponse(BaseModel):
|
| 16 |
+
reasoning_content: str = ""
|
| 17 |
+
generated_text: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
@app.post("/generate/qwen3-0.6b-gguf", response_model=GenerateResponse)
|
| 20 |
+
async def generate_qwen3_gguf_endpoint(request: PromptRequest):
|
| 21 |
+
messages = [{"role": "user", "content": request.prompt}]
|
| 22 |
+
response = qwen3_gguf_llm.create_chat_completion(messages=messages, max_tokens=256)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
generated_text = response['choices'][0]['message']['content']
|
| 24 |
+
return GenerateResponse(generated_text=generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|