File size: 13,577 Bytes
bc1321c
 
651ee96
bc1321c
651ee96
 
 
bc1321c
651ee96
 
 
bc1321c
 
651ee96
bc1321c
 
651ee96
bc1321c
 
651ee96
 
 
 
 
 
 
bc1321c
651ee96
bc1321c
651ee96
 
 
 
 
 
 
bc1321c
651ee96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1321c
651ee96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1321c
651ee96
 
 
 
 
 
 
 
bc1321c
651ee96
 
 
 
 
 
 
bc1321c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651ee96
 
 
 
 
 
 
 
 
 
bc1321c
 
 
 
 
 
 
 
651ee96
bc1321c
 
 
 
 
 
651ee96
bc1321c
651ee96
bc1321c
 
 
 
 
 
651ee96
bc1321c
651ee96
bc1321c
 
 
 
 
651ee96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1321c
651ee96
 
 
 
bc1321c
651ee96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1321c
651ee96
 
 
 
 
 
 
 
 
 
bc1321c
651ee96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import gradio as gr
import os
import openai
import torch
import sys
import uuid
from datetime import datetime

import json
import gspread
from google.oauth2 import service_account

from safetensors.torch import load_file
from lionguard2 import LionGuard2, CATEGORIES
from utils import get_embeddings

# -- OpenAI Setup --
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# -- Model Loading --
def load_lionguard2():
    model = LionGuard2()
    model.eval()
    state_dict = load_file('LionGuard2.safetensors')
    model.load_state_dict(state_dict)
    return model

model = load_lionguard2()

# -- Google Sheets Config --
GOOGLE_SHEET_URL = os.environ.get("GOOGLE_SHEET_URL")
GOOGLE_CREDENTIALS = os.environ.get("GCP_SERVICE_ACCOUNT")
RESULTS_SHEET_NAME = "results"
VOTES_SHEET_NAME = "votes"

def save_results_data(row):
    try:
        credentials = service_account.Credentials.from_service_account_info(
            json.loads(GOOGLE_CREDENTIALS),
            scopes=[
                "https://www.googleapis.com/auth/spreadsheets",
                "https://www.googleapis.com/auth/drive",
            ],
        )
        gc = gspread.authorize(credentials)
        sheet = gc.open_by_url(GOOGLE_SHEET_URL)
        ws = sheet.worksheet(RESULTS_SHEET_NAME)
        ws.append_row(list(row.values()))
    except Exception as e:
        print(f"Error saving results data: {e}")

def save_vote_data(text_id, agree):
    try:
        credentials = service_account.Credentials.from_service_account_info(
            json.loads(GOOGLE_CREDENTIALS),
            scopes=[
                "https://www.googleapis.com/auth/spreadsheets",
                "https://www.googleapis.com/auth/drive",
            ],
        )
        gc = gspread.authorize(credentials)
        sheet = gc.open_by_url(GOOGLE_SHEET_URL)
        ws = sheet.worksheet(VOTES_SHEET_NAME)
        vote_row = {
            "datetime": datetime.now().isoformat(),
            "text_id": text_id,
            "agree": agree
        }
        ws.append_row(list(vote_row.values()))
    except Exception as e:
        print(f"Error saving vote data: {e}")

# --- Classifier logic ---

def format_score_with_style(score_str):
    if score_str == "-":
        return '<span style="color: #9ca3af;">-</span>'
    try:
        score = float(score_str)
        percentage = int(score * 100)
        if score < 0.4:
            return f'<span style="color: #34d399; font-weight:600;">πŸ‘Œ {percentage}%</span>'
        elif 0.4 <= score < 0.7:
            return f'<span style="color: #fbbf24; font-weight:600;">⚠️ {percentage}%</span>'
        else:
            return f'<span style="color: #fca5a5; font-weight:600;">🚨 {percentage}%</span>'
    except:
        return score_str

def format_binary_score(score):
    percentage = int(score * 100)
    if score < 0.4:
        return f'<div style="color: #34d399; font-weight:700;">βœ… Pass ({percentage}/100)</div>'
    elif 0.4 <= score < 0.7:
        return f'<div style="color: #fbbf24; font-weight:700;">⚠️ Warning ({percentage}/100)</div>'
    else:
        return f'<div style="color: #fca5a5; font-weight:700;">🚨 Fail ({percentage}/100)</div>'

def analyze_text(text):
    if not text.strip():
        empty_html = '<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
        return empty_html, empty_html, "", ""
    try:
        text_id = str(uuid.uuid4())
        embeddings = get_embeddings([text])
        results = model.predict(embeddings)
        binary_score = results.get('binary', [0.0])[0]

        main_categories = ['hateful', 'insults', 'sexual', 'physical_violence', 'self_harm', 'all_other_misconduct']
        categories_html = []
        for category in main_categories:
            subcategories = CATEGORIES[category]
            category_name = category.replace('_', ' ').title()
            category_emojis = {
                'Hateful': '🀬',
                'Insults': 'πŸ’’',
                'Sexual': 'πŸ”ž',
                'Physical Violence': 'βš”οΈ',
                'Self Harm': '☹️',
                'All Other Misconduct': 'πŸ™…β€β™€οΈ'
            }
            category_display = f"{category_emojis.get(category_name, 'πŸ“')} {category_name}"
            level_scores = [results.get(subcategory_key, [0.0])[0] for subcategory_key in subcategories]
            max_score = max(level_scores) if level_scores else 0.0
            categories_html.append(f'''
            <tr>
                <td>{category_display}</td>
                <td style="text-align: center;">{format_score_with_style(f"{max_score:.4f}")}</td>
            </tr>
            ''')

        html_table = f'''
        <table style="width:100%">
        <thead>
        <tr><th>Category</th><th>Score</th></tr>
        </thead>
        <tbody>
        {''.join(categories_html)}
        </tbody>
        </table>
        '''

        # Save to Google Sheets if enabled
        if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
            results_row = {
                "datetime": datetime.now().isoformat(),
                "text_id": text_id,
                "text": text,
                "binary_score": binary_score,
                # Add all category scores as before...
            }
            save_results_data(results_row)

        voting_html = '<div>Help improve LionGuard2! Rate the analysis below.</div>'

        return format_binary_score(binary_score), html_table, text_id, voting_html

    except Exception as e:
        error_msg = f"Error analyzing text: {str(e)}"
        return f'<div style="color: #fca5a5;">❌ {error_msg}</div>', '', '', ''

def vote_thumbs_up(text_id):
    if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
        save_vote_data(text_id, True)
        return '<div style="color: #34d399; font-weight:700;">πŸŽ‰ Thank you!</div>'
    return '<div>Voting not available</div>'

def vote_thumbs_down(text_id):
    if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
        save_vote_data(text_id, False)
        return '<div style="color: #fca5a5; font-weight:700;">πŸ“ Thanks for the feedback!</div>'
    return '<div>Voting not available</div>'

# --- Chatbot guardrail logic ---
def get_openai_response(message, system_prompt="You are a helpful assistant."):
    try:
        response = client.chat.completions.create(
            model="gpt-4.1-nano",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": message}
            ],
            max_tokens=500,
            temperature=0,
            seed=42,
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error: {str(e)}. Please check your OpenAI API key."

def openai_moderation(message):
    try:
        response = client.moderations.create(input=message)
        return response.results[0].flagged
    except Exception as e:
        print(f"Error in OpenAI moderation: {e}")
        return False

def lionguard_2(message, threshold=0.5):
    try:
        embeddings = get_embeddings([message])
        results = model.predict(embeddings)
        binary_prob = results['binary'][0]
        return binary_prob > threshold
    except Exception as e:
        print(f"Error in LionGuard 2: {e}")
        return False

def process_message(message, history_no_mod, history_openai, history_lg):
    if not message.strip():
        return history_no_mod, history_openai, history_lg, ""
    no_mod_response = get_openai_response(message)
    history_no_mod.append({"role": "user", "content": message})
    history_no_mod.append({"role": "assistant", "content": no_mod_response})

    openai_flagged = openai_moderation(message)
    history_openai.append({"role": "user", "content": message})
    if openai_flagged:
        openai_response = "🚫 This message has been flagged by OpenAI moderation"
        history_openai.append({"role": "assistant", "content": openai_response})
    else:
        openai_response = get_openai_response(message)
        history_openai.append({"role": "assistant", "content": openai_response})

    lg_flagged = lionguard_2(message)
    history_lg.append({"role": "user", "content": message})
    if lg_flagged:
        lg_response = "🚫 This message has been flagged by LionGuard 2"
        history_lg.append({"role": "assistant", "content": lg_response})
    else:
        lg_response = get_openai_response(message)
        history_lg.append({"role": "assistant", "content": lg_response})

    return history_no_mod, history_openai, history_lg, ""

def clear_all_chats():
    return [], [], []

# ---- MAIN GRADIO UI ----

DISCLAIMER = """
<div style='background: #fbbf24; color: #1e293b; border-radius: 8px; padding: 14px; margin-bottom: 12px; font-size: 15px; font-weight:500;'>
⚠️ LionGuard 2 is an experimental ML model and may make mistakes. All entries are logged (anonymised) to improve the model.
</div>
"""

with gr.Blocks(title="LionGuard 2 Demo", theme=gr.themes.Soft()) as demo:
    gr.HTML("<h1 style='text-align:center'>LionGuard 2 Demo</h1>")

    with gr.Tabs():
        with gr.Tab("Classifier"):
            gr.HTML(DISCLAIMER)
            with gr.Row():
                with gr.Column(scale=1, min_width=400):
                    text_input = gr.Textbox(
                        label="Enter text to analyze:",
                        placeholder="Type your text here...",
                        lines=8,
                        max_lines=16,
                        container=True
                    )
                    analyze_btn = gr.Button("Analyze", variant="primary")
                with gr.Column(scale=1, min_width=400):
                    binary_output = gr.HTML(
                        value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
                    )
                    category_table = gr.HTML(
                        value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Category scores will appear here after analysis</div>'
                    )
                    voting_feedback = gr.HTML(value="")
                    current_text_id = gr.Textbox(value="", visible=False)

                    with gr.Row(visible=False) as voting_buttons_row:
                        thumbs_up_btn = gr.Button("πŸ‘ Looks Accurate", variant="primary")
                        thumbs_down_btn = gr.Button("πŸ‘Ž Looks Wrong", variant="secondary")

            def analyze_and_show_voting(text):
                binary_score, category_table_val, text_id, voting_html = analyze_text(text)
                show_vote = gr.update(visible=True) if text_id else gr.update(visible=False)
                return binary_score, category_table_val, text_id, show_vote, "", ""

            analyze_btn.click(
                analyze_and_show_voting,
                inputs=[text_input],
                outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
            )
            text_input.submit(
                analyze_and_show_voting,
                inputs=[text_input],
                outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
            )
            thumbs_up_btn.click(vote_thumbs_up, inputs=[current_text_id], outputs=[voting_feedback])
            thumbs_down_btn.click(vote_thumbs_down, inputs=[current_text_id], outputs=[voting_feedback])

        with gr.Tab("Chatbot Guardrail"):
            gr.HTML(DISCLAIMER)
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("#### πŸ”΅ No Moderation")
                    chatbot_no_mod = gr.Chatbot(height=400, label="No Moderation", show_label=False, bubble_full_width=False, type='messages')
                with gr.Column(scale=1):
                    gr.Markdown("#### 🟠 OpenAI Moderation")
                    chatbot_openai = gr.Chatbot(height=400, label="OpenAI Moderation", show_label=False, bubble_full_width=False, type='messages')
                with gr.Column(scale=1):
                    gr.Markdown("#### πŸ›‘οΈ LionGuard 2")
                    chatbot_lg = gr.Chatbot(height=400, label="LionGuard 2", show_label=False, bubble_full_width=False, type='messages')
            gr.Markdown("##### πŸ’¬ Send Message to All Models")
            with gr.Row():
                message_input = gr.Textbox(
                    placeholder="Type your message to compare responses...",
                    show_label=False,
                    scale=4
                )
                send_btn = gr.Button("Send", variant="primary", scale=1)
            with gr.Row():
                clear_btn = gr.Button("Clear All Chats", variant="stop")

            send_btn.click(
                process_message,
                inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
                outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
            )
            message_input.submit(
                process_message,
                inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
                outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
            )
            clear_btn.click(
                clear_all_chats,
                outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg]
            )

if __name__ == "__main__":
    demo.launch()