Spaces:
Running
Running
File size: 13,577 Bytes
bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 bc1321c 651ee96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import gradio as gr
import os
import openai
import torch
import sys
import uuid
from datetime import datetime
import json
import gspread
from google.oauth2 import service_account
from safetensors.torch import load_file
from lionguard2 import LionGuard2, CATEGORIES
from utils import get_embeddings
# -- OpenAI Setup --
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# -- Model Loading --
def load_lionguard2():
model = LionGuard2()
model.eval()
state_dict = load_file('LionGuard2.safetensors')
model.load_state_dict(state_dict)
return model
model = load_lionguard2()
# -- Google Sheets Config --
GOOGLE_SHEET_URL = os.environ.get("GOOGLE_SHEET_URL")
GOOGLE_CREDENTIALS = os.environ.get("GCP_SERVICE_ACCOUNT")
RESULTS_SHEET_NAME = "results"
VOTES_SHEET_NAME = "votes"
def save_results_data(row):
try:
credentials = service_account.Credentials.from_service_account_info(
json.loads(GOOGLE_CREDENTIALS),
scopes=[
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive",
],
)
gc = gspread.authorize(credentials)
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(RESULTS_SHEET_NAME)
ws.append_row(list(row.values()))
except Exception as e:
print(f"Error saving results data: {e}")
def save_vote_data(text_id, agree):
try:
credentials = service_account.Credentials.from_service_account_info(
json.loads(GOOGLE_CREDENTIALS),
scopes=[
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive",
],
)
gc = gspread.authorize(credentials)
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(VOTES_SHEET_NAME)
vote_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"agree": agree
}
ws.append_row(list(vote_row.values()))
except Exception as e:
print(f"Error saving vote data: {e}")
# --- Classifier logic ---
def format_score_with_style(score_str):
if score_str == "-":
return '<span style="color: #9ca3af;">-</span>'
try:
score = float(score_str)
percentage = int(score * 100)
if score < 0.4:
return f'<span style="color: #34d399; font-weight:600;">π {percentage}%</span>'
elif 0.4 <= score < 0.7:
return f'<span style="color: #fbbf24; font-weight:600;">β οΈ {percentage}%</span>'
else:
return f'<span style="color: #fca5a5; font-weight:600;">π¨ {percentage}%</span>'
except:
return score_str
def format_binary_score(score):
percentage = int(score * 100)
if score < 0.4:
return f'<div style="color: #34d399; font-weight:700;">β
Pass ({percentage}/100)</div>'
elif 0.4 <= score < 0.7:
return f'<div style="color: #fbbf24; font-weight:700;">β οΈ Warning ({percentage}/100)</div>'
else:
return f'<div style="color: #fca5a5; font-weight:700;">π¨ Fail ({percentage}/100)</div>'
def analyze_text(text):
if not text.strip():
empty_html = '<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
return empty_html, empty_html, "", ""
try:
text_id = str(uuid.uuid4())
embeddings = get_embeddings([text])
results = model.predict(embeddings)
binary_score = results.get('binary', [0.0])[0]
main_categories = ['hateful', 'insults', 'sexual', 'physical_violence', 'self_harm', 'all_other_misconduct']
categories_html = []
for category in main_categories:
subcategories = CATEGORIES[category]
category_name = category.replace('_', ' ').title()
category_emojis = {
'Hateful': 'π€¬',
'Insults': 'π’',
'Sexual': 'π',
'Physical Violence': 'βοΈ',
'Self Harm': 'βΉοΈ',
'All Other Misconduct': 'π
ββοΈ'
}
category_display = f"{category_emojis.get(category_name, 'π')} {category_name}"
level_scores = [results.get(subcategory_key, [0.0])[0] for subcategory_key in subcategories]
max_score = max(level_scores) if level_scores else 0.0
categories_html.append(f'''
<tr>
<td>{category_display}</td>
<td style="text-align: center;">{format_score_with_style(f"{max_score:.4f}")}</td>
</tr>
''')
html_table = f'''
<table style="width:100%">
<thead>
<tr><th>Category</th><th>Score</th></tr>
</thead>
<tbody>
{''.join(categories_html)}
</tbody>
</table>
'''
# Save to Google Sheets if enabled
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
results_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"text": text,
"binary_score": binary_score,
# Add all category scores as before...
}
save_results_data(results_row)
voting_html = '<div>Help improve LionGuard2! Rate the analysis below.</div>'
return format_binary_score(binary_score), html_table, text_id, voting_html
except Exception as e:
error_msg = f"Error analyzing text: {str(e)}"
return f'<div style="color: #fca5a5;">β {error_msg}</div>', '', '', ''
def vote_thumbs_up(text_id):
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
save_vote_data(text_id, True)
return '<div style="color: #34d399; font-weight:700;">π Thank you!</div>'
return '<div>Voting not available</div>'
def vote_thumbs_down(text_id):
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
save_vote_data(text_id, False)
return '<div style="color: #fca5a5; font-weight:700;">π Thanks for the feedback!</div>'
return '<div>Voting not available</div>'
# --- Chatbot guardrail logic ---
def get_openai_response(message, system_prompt="You are a helpful assistant."):
try:
response = client.chat.completions.create(
model="gpt-4.1-nano",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
max_tokens=500,
temperature=0,
seed=42,
)
return response.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}. Please check your OpenAI API key."
def openai_moderation(message):
try:
response = client.moderations.create(input=message)
return response.results[0].flagged
except Exception as e:
print(f"Error in OpenAI moderation: {e}")
return False
def lionguard_2(message, threshold=0.5):
try:
embeddings = get_embeddings([message])
results = model.predict(embeddings)
binary_prob = results['binary'][0]
return binary_prob > threshold
except Exception as e:
print(f"Error in LionGuard 2: {e}")
return False
def process_message(message, history_no_mod, history_openai, history_lg):
if not message.strip():
return history_no_mod, history_openai, history_lg, ""
no_mod_response = get_openai_response(message)
history_no_mod.append({"role": "user", "content": message})
history_no_mod.append({"role": "assistant", "content": no_mod_response})
openai_flagged = openai_moderation(message)
history_openai.append({"role": "user", "content": message})
if openai_flagged:
openai_response = "π« This message has been flagged by OpenAI moderation"
history_openai.append({"role": "assistant", "content": openai_response})
else:
openai_response = get_openai_response(message)
history_openai.append({"role": "assistant", "content": openai_response})
lg_flagged = lionguard_2(message)
history_lg.append({"role": "user", "content": message})
if lg_flagged:
lg_response = "π« This message has been flagged by LionGuard 2"
history_lg.append({"role": "assistant", "content": lg_response})
else:
lg_response = get_openai_response(message)
history_lg.append({"role": "assistant", "content": lg_response})
return history_no_mod, history_openai, history_lg, ""
def clear_all_chats():
return [], [], []
# ---- MAIN GRADIO UI ----
DISCLAIMER = """
<div style='background: #fbbf24; color: #1e293b; border-radius: 8px; padding: 14px; margin-bottom: 12px; font-size: 15px; font-weight:500;'>
β οΈ LionGuard 2 is an experimental ML model and may make mistakes. All entries are logged (anonymised) to improve the model.
</div>
"""
with gr.Blocks(title="LionGuard 2 Demo", theme=gr.themes.Soft()) as demo:
gr.HTML("<h1 style='text-align:center'>LionGuard 2 Demo</h1>")
with gr.Tabs():
with gr.Tab("Classifier"):
gr.HTML(DISCLAIMER)
with gr.Row():
with gr.Column(scale=1, min_width=400):
text_input = gr.Textbox(
label="Enter text to analyze:",
placeholder="Type your text here...",
lines=8,
max_lines=16,
container=True
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column(scale=1, min_width=400):
binary_output = gr.HTML(
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
)
category_table = gr.HTML(
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Category scores will appear here after analysis</div>'
)
voting_feedback = gr.HTML(value="")
current_text_id = gr.Textbox(value="", visible=False)
with gr.Row(visible=False) as voting_buttons_row:
thumbs_up_btn = gr.Button("π Looks Accurate", variant="primary")
thumbs_down_btn = gr.Button("π Looks Wrong", variant="secondary")
def analyze_and_show_voting(text):
binary_score, category_table_val, text_id, voting_html = analyze_text(text)
show_vote = gr.update(visible=True) if text_id else gr.update(visible=False)
return binary_score, category_table_val, text_id, show_vote, "", ""
analyze_btn.click(
analyze_and_show_voting,
inputs=[text_input],
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
)
text_input.submit(
analyze_and_show_voting,
inputs=[text_input],
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
)
thumbs_up_btn.click(vote_thumbs_up, inputs=[current_text_id], outputs=[voting_feedback])
thumbs_down_btn.click(vote_thumbs_down, inputs=[current_text_id], outputs=[voting_feedback])
with gr.Tab("Chatbot Guardrail"):
gr.HTML(DISCLAIMER)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### π΅ No Moderation")
chatbot_no_mod = gr.Chatbot(height=400, label="No Moderation", show_label=False, bubble_full_width=False, type='messages')
with gr.Column(scale=1):
gr.Markdown("#### π OpenAI Moderation")
chatbot_openai = gr.Chatbot(height=400, label="OpenAI Moderation", show_label=False, bubble_full_width=False, type='messages')
with gr.Column(scale=1):
gr.Markdown("#### π‘οΈ LionGuard 2")
chatbot_lg = gr.Chatbot(height=400, label="LionGuard 2", show_label=False, bubble_full_width=False, type='messages')
gr.Markdown("##### π¬ Send Message to All Models")
with gr.Row():
message_input = gr.Textbox(
placeholder="Type your message to compare responses...",
show_label=False,
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear All Chats", variant="stop")
send_btn.click(
process_message,
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
)
message_input.submit(
process_message,
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
)
clear_btn.click(
clear_all_chats,
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg]
)
if __name__ == "__main__":
demo.launch()
|