lionguard-demo / app.py
gabrielchua's picture
Update app.py
07ac121 verified
raw
history blame
16.8 kB
import gradio as gr
import os
import openai
import torch
import sys
import uuid
from datetime import datetime
import json
from safetensors.torch import load_file
from lionguard2 import LionGuard2, CATEGORIES
from utils import get_embeddings
import gspread
from google.oauth2 import service_account
# --- OpenAI Setup ---
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# --- Model Loading ---
def load_lionguard2():
model = LionGuard2()
model.eval()
state_dict = load_file('LionGuard2.safetensors')
model.load_state_dict(state_dict)
return model
model = load_lionguard2()
# --- Google Sheets Config ---
GOOGLE_SHEET_URL = os.environ.get("GOOGLE_SHEET_URL")
GOOGLE_CREDENTIALS = os.environ.get("GCP_SERVICE_ACCOUNT")
RESULTS_SHEET_NAME = "results"
VOTES_SHEET_NAME = "votes"
CHATBOT_SHEET_NAME = "chatbot"
def get_gspread_client():
credentials = service_account.Credentials.from_service_account_info(
json.loads(GOOGLE_CREDENTIALS),
scopes=[
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive",
],
)
return gspread.authorize(credentials)
def save_results_data(row):
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(RESULTS_SHEET_NAME)
ws.append_row(list(row.values()))
except Exception as e:
print(f"Error saving results data: {e}")
def save_vote_data(text_id, agree):
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(VOTES_SHEET_NAME)
vote_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"agree": agree
}
ws.append_row(list(vote_row.values()))
except Exception as e:
print(f"Error saving vote data: {e}")
def log_chatbot_data(row):
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(CHATBOT_SHEET_NAME)
ws.append_row([
row["datetime"], row["text_id"], row["text"], row["binary_score"],
row["hateful_l1_score"], row["hateful_l2_score"], row["insults_score"],
row["sexual_l1_score"], row["sexual_l2_score"], row["physical_violence_score"],
row["self_harm_l1_score"], row["self_harm_l2_score"], row["aom_l1_score"],
row["aom_l2_score"], row["openai_score"]
])
except Exception as e:
print(f"Error saving chatbot data: {e}")
# --- Classifier logic ---
def format_score_with_style(score_str):
if score_str == "-":
return '<span style="color: #9ca3af;">-</span>'
try:
score = float(score_str)
percentage = int(score * 100)
if score < 0.4:
return f'<span style="color: #34d399; font-weight:600;">πŸ‘Œ {percentage}%</span>'
elif 0.4 <= score < 0.7:
return f'<span style="color: #fbbf24; font-weight:600;">⚠️ {percentage}%</span>'
else:
return f'<span style="color: #fca5a5; font-weight:600;">🚨 {percentage}%</span>'
except:
return score_str
def format_binary_score(score):
percentage = int(score * 100)
if score < 0.4:
return f'<div style="background:linear-gradient(135deg, #065f46 0%, #047857 100%); color:#34d399; padding:24px 0; border-radius:20px; text-align:center; font-weight:900; border:3px solid #10b981; font-size:24px; margin:24px 0; box-shadow:0 4px 24px rgba(0,0,0,0.3);">βœ… Pass ({percentage}/100)</div>'
elif 0.4 <= score < 0.7:
return f'<div style="background:linear-gradient(135deg, #92400e 0%, #b45309 100%); color:#fbbf24; padding:24px 0; border-radius:20px; text-align:center; font-weight:900; border:3px solid #f59e0b; font-size:24px; margin:24px 0; box-shadow:0 4px 24px rgba(0,0,0,0.3);">⚠️ Warning ({percentage}/100)</div>'
else:
return f'<div style="background:linear-gradient(135deg, #991b1b 0%, #b91c1c 100%); color:#fca5a5; padding:24px 0; border-radius:20px; text-align:center; font-weight:900; border:3px solid #ef4444; font-size:24px; margin:24px 0; box-shadow:0 4px 24px rgba(0,0,0,0.3);">🚨 Fail ({percentage}/100)</div>'
def analyze_text(text):
if not text.strip():
empty_html = '<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
return empty_html, empty_html, "", ""
try:
text_id = str(uuid.uuid4())
embeddings = get_embeddings([text])
results = model.predict(embeddings)
binary_score = results.get('binary', [0.0])[0]
main_categories = ['hateful', 'insults', 'sexual', 'physical_violence', 'self_harm', 'all_other_misconduct']
categories_html = []
max_scores = {}
for category in main_categories:
subcategories = CATEGORIES[category]
category_name = category.replace('_', ' ').title()
category_emojis = {
'Hateful': '🀬',
'Insults': 'πŸ’’',
'Sexual': 'πŸ”ž',
'Physical Violence': 'βš”οΈ',
'Self Harm': '☹️',
'All Other Misconduct': 'πŸ™…β€β™€οΈ'
}
category_display = f"{category_emojis.get(category_name, 'πŸ“')} {category_name}"
level_scores = [results.get(subcategory_key, [0.0])[0] for subcategory_key in subcategories]
max_score = max(level_scores) if level_scores else 0.0
max_scores[category] = max_score
categories_html.append(f'''
<tr>
<td>{category_display}</td>
<td style="text-align: center;">{format_score_with_style(f"{max_score:.4f}")}</td>
</tr>
''')
html_table = f'''
<table style="width:100%">
<thead>
<tr><th>Category</th><th>Score</th></tr>
</thead>
<tbody>
{''.join(categories_html)}
</tbody>
</table>
'''
# Save to Google Sheets if enabled
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
results_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"text": text,
"binary_score": binary_score,
}
for category in main_categories:
results_row[f"{category}_max"] = max_scores[category]
save_results_data(results_row)
voting_html = '<div>Help improve LionGuard2! Rate the analysis below.</div>'
return format_binary_score(binary_score), html_table, text_id, voting_html
except Exception as e:
error_msg = f"Error analyzing text: {str(e)}"
return f'<div style="color: #fca5a5;">❌ {error_msg}</div>', '', '', ''
def vote_thumbs_up(text_id):
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
save_vote_data(text_id, True)
return '<div style="color: #34d399; font-weight:700;">πŸŽ‰ Thank you!</div>'
return '<div>Voting not available or analysis not yet run.</div>'
def vote_thumbs_down(text_id):
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
save_vote_data(text_id, False)
return '<div style="color: #fca5a5; font-weight:700;">πŸ“ Thanks for the feedback!</div>'
return '<div>Voting not available or analysis not yet run.</div>'
# --- Guardrail Comparison logic ---
def get_openai_response(message, system_prompt="You are a helpful assistant."):
try:
response = client.chat.completions.create(
model="gpt-4.1-nano",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
max_tokens=500,
temperature=0,
seed=42,
)
return response.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}. Please check your OpenAI API key."
def openai_moderation(message):
try:
response = client.moderations.create(input=message)
return response.results[0].flagged
except Exception as e:
print(f"Error in OpenAI moderation: {e}")
return False
def lionguard_2(message, threshold=0.5):
try:
embeddings = get_embeddings([message])
results = model.predict(embeddings)
binary_prob = results['binary'][0]
return binary_prob > threshold, binary_prob
except Exception as e:
print(f"Error in LionGuard 2: {e}")
return False, 0.0
def process_message(message, history_no_mod, history_openai, history_lg):
if not message.strip():
return history_no_mod, history_openai, history_lg, ""
no_mod_response = get_openai_response(message)
history_no_mod.append({"role": "user", "content": message})
history_no_mod.append({"role": "assistant", "content": no_mod_response})
openai_flagged = openai_moderation(message)
history_openai.append({"role": "user", "content": message})
if openai_flagged:
openai_response = "🚫 This message has been flagged by OpenAI moderation"
history_openai.append({"role": "assistant", "content": openai_response})
else:
openai_response = get_openai_response(message)
history_openai.append({"role": "assistant", "content": openai_response})
lg_flagged, lg_score = lionguard_2(message)
history_lg.append({"role": "user", "content": message})
if lg_flagged:
lg_response = "🚫 This message has been flagged by LionGuard 2"
history_lg.append({"role": "assistant", "content": lg_response})
else:
lg_response = get_openai_response(message)
history_lg.append({"role": "assistant", "content": lg_response})
# --- Logging for chatbot worksheet ---
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
try:
embeddings = get_embeddings([message])
results = model.predict(embeddings)
now = datetime.now().isoformat()
text_id = str(uuid.uuid4())
row = {
"datetime": now,
"text_id": text_id,
"text": message,
"binary_score": results.get("binary", [None])[0],
"hateful_l1_score": results.get(CATEGORIES['hateful'][0], [None])[0],
"hateful_l2_score": results.get(CATEGORIES['hateful'][1], [None])[0],
"insults_score": results.get(CATEGORIES['insults'][0], [None])[0],
"sexual_l1_score": results.get(CATEGORIES['sexual'][0], [None])[0],
"sexual_l2_score": results.get(CATEGORIES['sexual'][1], [None])[0],
"physical_violence_score": results.get(CATEGORIES['physical_violence'][0], [None])[0],
"self_harm_l1_score": results.get(CATEGORIES['self_harm'][0], [None])[0],
"self_harm_l2_score": results.get(CATEGORIES['self_harm'][1], [None])[0],
"aom_l1_score": results.get(CATEGORIES['all_other_misconduct'][0], [None])[0],
"aom_l2_score": results.get(CATEGORIES['all_other_misconduct'][1], [None])[0],
"openai_score": None
}
try:
openai_result = client.moderations.create(input=message)
# Using the "hate" category score as a demonstration. You may customize as needed.
row["openai_score"] = float(openai_result.results[0].category_scores.get("hate", 0.0))
except Exception:
row["openai_score"] = None
log_chatbot_data(row)
except Exception as e:
print(f"Chatbot logging failed: {e}")
return history_no_mod, history_openai, history_lg, ""
def clear_all_chats():
return [], [], []
# ---- MAIN GRADIO UI ----
DISCLAIMER = """
<div style='background: #fbbf24; color: #1e293b; border-radius: 8px; padding: 14px; margin-bottom: 12px; font-size: 15px; font-weight:500;'>
⚠️ LionGuard 2 may make mistakes. All entries are logged (anonymised) to improve the model.
</div>
"""
with gr.Blocks(title="LionGuard 2 Demo", theme=gr.themes.Soft()) as demo:
gr.HTML("<h1 style='text-align:center'>LionGuard 2 Demo</h1>")
with gr.Tabs():
with gr.Tab("Classifier"):
gr.HTML(DISCLAIMER)
with gr.Row():
with gr.Column(scale=1, min_width=400):
text_input = gr.Textbox(
label="Enter text to analyze:",
placeholder="Type your text here...",
lines=8,
max_lines=16,
container=True
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column(scale=1, min_width=400):
binary_output = gr.HTML(
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic; font-size:36px;">Enter text to analyze</div>'
)
category_table = gr.HTML(
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Category scores will appear here after analysis</div>'
)
voting_feedback = gr.HTML(value="")
current_text_id = gr.Textbox(value="", visible=False)
with gr.Row(visible=False) as voting_buttons_row:
thumbs_up_btn = gr.Button("πŸ‘ Looks Accurate", variant="primary")
thumbs_down_btn = gr.Button("πŸ‘Ž Looks Wrong", variant="secondary")
def analyze_and_show_voting(text):
binary_score, category_table_val, text_id, voting_html = analyze_text(text)
show_vote = gr.update(visible=True) if text_id else gr.update(visible=False)
return binary_score, category_table_val, text_id, show_vote, "", ""
analyze_btn.click(
analyze_and_show_voting,
inputs=[text_input],
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
)
text_input.submit(
analyze_and_show_voting,
inputs=[text_input],
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
)
thumbs_up_btn.click(vote_thumbs_up, inputs=[current_text_id], outputs=[voting_feedback])
thumbs_down_btn.click(vote_thumbs_down, inputs=[current_text_id], outputs=[voting_feedback])
with gr.Tab("Guardrail Comparison"):
gr.HTML(DISCLAIMER)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### πŸ”΅ No Moderation")
chatbot_no_mod = gr.Chatbot(height=650, label="No Moderation", show_label=False, bubble_full_width=False, type='messages')
with gr.Column(scale=1):
gr.Markdown("#### 🟠 OpenAI Moderation")
chatbot_openai = gr.Chatbot(height=650, label="OpenAI Moderation", show_label=False, bubble_full_width=False, type='messages')
with gr.Column(scale=1):
gr.Markdown("#### πŸ›‘οΈ LionGuard 2")
chatbot_lg = gr.Chatbot(height=650, label="LionGuard 2", show_label=False, bubble_full_width=False, type='messages')
gr.Markdown("##### πŸ’¬ Send Message to All Models")
with gr.Row():
message_input = gr.Textbox(
placeholder="Type your message to compare responses...",
show_label=False,
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear All Chats", variant="stop")
send_btn.click(
process_message,
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
)
message_input.submit(
process_message,
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
)
clear_btn.click(
clear_all_chats,
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg]
)
if __name__ == "__main__":
demo.launch()