Spaces:
Running
Running
Commit
Β·
0ff9a77
1
Parent(s):
6291db1
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,59 +1,178 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import openai
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
from safetensors.torch import load_file
|
| 11 |
-
from lionguard2 import LionGuard2
|
| 12 |
from utils import get_embeddings
|
| 13 |
|
| 14 |
-
#
|
| 15 |
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
model_path = 'LionGuard2.safetensors'
|
| 23 |
-
state_dict = load_file(model_path)
|
| 24 |
-
model.load_state_dict(state_dict)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
Returns:
|
| 35 |
-
bool: True if content is flagged as unsafe, False otherwise
|
| 36 |
-
"""
|
| 37 |
try:
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
results = model.predict(embeddings)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def get_openai_response(message, system_prompt="You are a helpful assistant."):
|
| 56 |
-
"""Get response from OpenAI API"""
|
| 57 |
try:
|
| 58 |
response = client.chat.completions.create(
|
| 59 |
model="gpt-4.1-nano",
|
|
@@ -70,134 +189,146 @@ def get_openai_response(message, system_prompt="You are a helpful assistant."):
|
|
| 70 |
return f"Error: {str(e)}. Please check your OpenAI API key."
|
| 71 |
|
| 72 |
def openai_moderation(message):
|
| 73 |
-
"""
|
| 74 |
-
OpenAI moderation function that uses OpenAI's built-in moderation API.
|
| 75 |
-
|
| 76 |
-
Args:
|
| 77 |
-
message: The text message to check
|
| 78 |
-
|
| 79 |
-
Returns:
|
| 80 |
-
bool: True if content is flagged as unsafe, False otherwise
|
| 81 |
-
"""
|
| 82 |
try:
|
| 83 |
response = client.moderations.create(input=message)
|
| 84 |
return response.results[0].flagged
|
| 85 |
except Exception as e:
|
| 86 |
print(f"Error in OpenAI moderation: {e}")
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
return False
|
| 89 |
|
| 90 |
def process_message(message, history_no_mod, history_openai, history_lg):
|
| 91 |
-
"""Process message for all three chatbots"""
|
| 92 |
if not message.strip():
|
| 93 |
return history_no_mod, history_openai, history_lg, ""
|
| 94 |
-
|
| 95 |
-
# Process for gpt-4.1-nano (no moderation)
|
| 96 |
no_mod_response = get_openai_response(message)
|
| 97 |
history_no_mod.append({"role": "user", "content": message})
|
| 98 |
history_no_mod.append({"role": "assistant", "content": no_mod_response})
|
| 99 |
-
|
| 100 |
-
# Process for gpt-4.1-nano with OpenAI moderation
|
| 101 |
openai_flagged = openai_moderation(message)
|
| 102 |
history_openai.append({"role": "user", "content": message})
|
| 103 |
-
|
| 104 |
if openai_flagged:
|
| 105 |
openai_response = "π« This message has been flagged by OpenAI moderation"
|
| 106 |
history_openai.append({"role": "assistant", "content": openai_response})
|
| 107 |
else:
|
| 108 |
-
openai_response = get_openai_response(
|
| 109 |
-
message,
|
| 110 |
-
)
|
| 111 |
history_openai.append({"role": "assistant", "content": openai_response})
|
| 112 |
-
|
| 113 |
-
# Process for gpt-4.1-nano with LionGuard 2
|
| 114 |
lg_flagged = lionguard_2(message)
|
| 115 |
history_lg.append({"role": "user", "content": message})
|
| 116 |
-
|
| 117 |
if lg_flagged:
|
| 118 |
lg_response = "π« This message has been flagged by LionGuard 2"
|
| 119 |
history_lg.append({"role": "assistant", "content": lg_response})
|
| 120 |
else:
|
| 121 |
-
lg_response = get_openai_response(
|
| 122 |
-
message,
|
| 123 |
-
)
|
| 124 |
history_lg.append({"role": "assistant", "content": lg_response})
|
| 125 |
-
|
| 126 |
return history_no_mod, history_openai, history_lg, ""
|
| 127 |
|
| 128 |
def clear_all_chats():
|
| 129 |
-
"""Clear all chat histories"""
|
| 130 |
return [], [], []
|
| 131 |
|
| 132 |
-
#
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
height=800,
|
| 152 |
-
label="OpenAI Moderation",
|
| 153 |
-
show_label=False,
|
| 154 |
-
bubble_full_width=False,
|
| 155 |
-
type='messages'
|
| 156 |
)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
# Control buttons
|
| 179 |
-
with gr.Row():
|
| 180 |
-
clear_btn = gr.Button("Clear All Chats", variant="stop")
|
| 181 |
-
|
| 182 |
-
# Event handlers
|
| 183 |
-
send_btn.click(
|
| 184 |
-
process_message,
|
| 185 |
-
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
|
| 186 |
-
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
message_input.submit(
|
| 190 |
-
process_message,
|
| 191 |
-
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
|
| 192 |
-
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
# Clear button
|
| 196 |
-
clear_btn.click(
|
| 197 |
-
clear_all_chats,
|
| 198 |
-
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg]
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
# Launch the app
|
| 202 |
if __name__ == "__main__":
|
| 203 |
-
demo.launch(
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
| 3 |
+
import openai
|
| 4 |
import torch
|
| 5 |
+
import sys
|
| 6 |
+
import uuid
|
| 7 |
+
from datetime import datetime
|
| 8 |
|
| 9 |
+
import json
|
| 10 |
+
import gspread
|
| 11 |
+
from google.oauth2 import service_account
|
| 12 |
|
| 13 |
from safetensors.torch import load_file
|
| 14 |
+
from lionguard2 import LionGuard2, CATEGORIES
|
| 15 |
from utils import get_embeddings
|
| 16 |
|
| 17 |
+
# -- OpenAI Setup --
|
| 18 |
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 19 |
|
| 20 |
+
# -- Model Loading --
|
| 21 |
+
def load_lionguard2():
|
| 22 |
+
model = LionGuard2()
|
| 23 |
+
model.eval()
|
| 24 |
+
state_dict = load_file('LionGuard2.safetensors')
|
| 25 |
+
model.load_state_dict(state_dict)
|
| 26 |
+
return model
|
| 27 |
|
| 28 |
+
model = load_lionguard2()
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# -- Google Sheets Config --
|
| 31 |
+
GOOGLE_SHEET_URL = os.environ.get("GOOGLE_SHEET_URL")
|
| 32 |
+
GOOGLE_CREDENTIALS = os.environ.get("GCP_SERVICE_ACCOUNT")
|
| 33 |
+
RESULTS_SHEET_NAME = "results"
|
| 34 |
+
VOTES_SHEET_NAME = "votes"
|
| 35 |
+
|
| 36 |
+
def save_results_data(row):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
+
credentials = service_account.Credentials.from_service_account_info(
|
| 39 |
+
json.loads(GOOGLE_CREDENTIALS),
|
| 40 |
+
scopes=[
|
| 41 |
+
"https://www.googleapis.com/auth/spreadsheets",
|
| 42 |
+
"https://www.googleapis.com/auth/drive",
|
| 43 |
+
],
|
| 44 |
+
)
|
| 45 |
+
gc = gspread.authorize(credentials)
|
| 46 |
+
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
|
| 47 |
+
ws = sheet.worksheet(RESULTS_SHEET_NAME)
|
| 48 |
+
ws.append_row(list(row.values()))
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Error saving results data: {e}")
|
| 51 |
+
|
| 52 |
+
def save_vote_data(text_id, agree):
|
| 53 |
+
try:
|
| 54 |
+
credentials = service_account.Credentials.from_service_account_info(
|
| 55 |
+
json.loads(GOOGLE_CREDENTIALS),
|
| 56 |
+
scopes=[
|
| 57 |
+
"https://www.googleapis.com/auth/spreadsheets",
|
| 58 |
+
"https://www.googleapis.com/auth/drive",
|
| 59 |
+
],
|
| 60 |
+
)
|
| 61 |
+
gc = gspread.authorize(credentials)
|
| 62 |
+
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
|
| 63 |
+
ws = sheet.worksheet(VOTES_SHEET_NAME)
|
| 64 |
+
vote_row = {
|
| 65 |
+
"datetime": datetime.now().isoformat(),
|
| 66 |
+
"text_id": text_id,
|
| 67 |
+
"agree": agree
|
| 68 |
+
}
|
| 69 |
+
ws.append_row(list(vote_row.values()))
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error saving vote data: {e}")
|
| 72 |
+
|
| 73 |
+
# --- Classifier logic ---
|
| 74 |
+
|
| 75 |
+
def format_score_with_style(score_str):
|
| 76 |
+
if score_str == "-":
|
| 77 |
+
return '<span style="color: #9ca3af;">-</span>'
|
| 78 |
+
try:
|
| 79 |
+
score = float(score_str)
|
| 80 |
+
percentage = int(score * 100)
|
| 81 |
+
if score < 0.4:
|
| 82 |
+
return f'<span style="color: #34d399; font-weight:600;">π {percentage}%</span>'
|
| 83 |
+
elif 0.4 <= score < 0.7:
|
| 84 |
+
return f'<span style="color: #fbbf24; font-weight:600;">β οΈ {percentage}%</span>'
|
| 85 |
+
else:
|
| 86 |
+
return f'<span style="color: #fca5a5; font-weight:600;">π¨ {percentage}%</span>'
|
| 87 |
+
except:
|
| 88 |
+
return score_str
|
| 89 |
+
|
| 90 |
+
def format_binary_score(score):
|
| 91 |
+
percentage = int(score * 100)
|
| 92 |
+
if score < 0.4:
|
| 93 |
+
return f'<div style="color: #34d399; font-weight:700;">β
Pass ({percentage}/100)</div>'
|
| 94 |
+
elif 0.4 <= score < 0.7:
|
| 95 |
+
return f'<div style="color: #fbbf24; font-weight:700;">β οΈ Warning ({percentage}/100)</div>'
|
| 96 |
+
else:
|
| 97 |
+
return f'<div style="color: #fca5a5; font-weight:700;">π¨ Fail ({percentage}/100)</div>'
|
| 98 |
+
|
| 99 |
+
def analyze_text(text):
|
| 100 |
+
if not text.strip():
|
| 101 |
+
empty_html = '<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
|
| 102 |
+
return empty_html, empty_html, "", ""
|
| 103 |
+
try:
|
| 104 |
+
text_id = str(uuid.uuid4())
|
| 105 |
+
embeddings = get_embeddings([text])
|
| 106 |
results = model.predict(embeddings)
|
| 107 |
+
binary_score = results.get('binary', [0.0])[0]
|
| 108 |
+
|
| 109 |
+
main_categories = ['hateful', 'insults', 'sexual', 'physical_violence', 'self_harm', 'all_other_misconduct']
|
| 110 |
+
categories_html = []
|
| 111 |
+
for category in main_categories:
|
| 112 |
+
subcategories = CATEGORIES[category]
|
| 113 |
+
category_name = category.replace('_', ' ').title()
|
| 114 |
+
category_emojis = {
|
| 115 |
+
'Hateful': 'π€¬',
|
| 116 |
+
'Insults': 'π’',
|
| 117 |
+
'Sexual': 'π',
|
| 118 |
+
'Physical Violence': 'βοΈ',
|
| 119 |
+
'Self Harm': 'βΉοΈ',
|
| 120 |
+
'All Other Misconduct': 'π
ββοΈ'
|
| 121 |
+
}
|
| 122 |
+
category_display = f"{category_emojis.get(category_name, 'π')} {category_name}"
|
| 123 |
+
level_scores = [results.get(subcategory_key, [0.0])[0] for subcategory_key in subcategories]
|
| 124 |
+
max_score = max(level_scores) if level_scores else 0.0
|
| 125 |
+
categories_html.append(f'''
|
| 126 |
+
<tr>
|
| 127 |
+
<td>{category_display}</td>
|
| 128 |
+
<td style="text-align: center;">{format_score_with_style(f"{max_score:.4f}")}</td>
|
| 129 |
+
</tr>
|
| 130 |
+
''')
|
| 131 |
+
|
| 132 |
+
html_table = f'''
|
| 133 |
+
<table style="width:100%">
|
| 134 |
+
<thead>
|
| 135 |
+
<tr><th>Category</th><th>Score</th></tr>
|
| 136 |
+
</thead>
|
| 137 |
+
<tbody>
|
| 138 |
+
{''.join(categories_html)}
|
| 139 |
+
</tbody>
|
| 140 |
+
</table>
|
| 141 |
+
'''
|
| 142 |
+
|
| 143 |
+
# Save to Google Sheets if enabled
|
| 144 |
+
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
|
| 145 |
+
results_row = {
|
| 146 |
+
"datetime": datetime.now().isoformat(),
|
| 147 |
+
"text_id": text_id,
|
| 148 |
+
"text": text,
|
| 149 |
+
"binary_score": binary_score,
|
| 150 |
+
# Add all category scores as before...
|
| 151 |
+
}
|
| 152 |
+
save_results_data(results_row)
|
| 153 |
+
|
| 154 |
+
voting_html = '<div>Help improve LionGuard2! Rate the analysis below.</div>'
|
| 155 |
+
|
| 156 |
+
return format_binary_score(binary_score), html_table, text_id, voting_html
|
| 157 |
+
|
| 158 |
except Exception as e:
|
| 159 |
+
error_msg = f"Error analyzing text: {str(e)}"
|
| 160 |
+
return f'<div style="color: #fca5a5;">β {error_msg}</div>', '', '', ''
|
| 161 |
+
|
| 162 |
+
def vote_thumbs_up(text_id):
|
| 163 |
+
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
|
| 164 |
+
save_vote_data(text_id, True)
|
| 165 |
+
return '<div style="color: #34d399; font-weight:700;">π Thank you!</div>'
|
| 166 |
+
return '<div>Voting not available</div>'
|
| 167 |
|
| 168 |
+
def vote_thumbs_down(text_id):
|
| 169 |
+
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
|
| 170 |
+
save_vote_data(text_id, False)
|
| 171 |
+
return '<div style="color: #fca5a5; font-weight:700;">π Thanks for the feedback!</div>'
|
| 172 |
+
return '<div>Voting not available</div>'
|
| 173 |
+
|
| 174 |
+
# --- Chatbot guardrail logic ---
|
| 175 |
def get_openai_response(message, system_prompt="You are a helpful assistant."):
|
|
|
|
| 176 |
try:
|
| 177 |
response = client.chat.completions.create(
|
| 178 |
model="gpt-4.1-nano",
|
|
|
|
| 189 |
return f"Error: {str(e)}. Please check your OpenAI API key."
|
| 190 |
|
| 191 |
def openai_moderation(message):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
try:
|
| 193 |
response = client.moderations.create(input=message)
|
| 194 |
return response.results[0].flagged
|
| 195 |
except Exception as e:
|
| 196 |
print(f"Error in OpenAI moderation: {e}")
|
| 197 |
+
return False
|
| 198 |
+
|
| 199 |
+
def lionguard_2(message, threshold=0.5):
|
| 200 |
+
try:
|
| 201 |
+
embeddings = get_embeddings([message])
|
| 202 |
+
results = model.predict(embeddings)
|
| 203 |
+
binary_prob = results['binary'][0]
|
| 204 |
+
return binary_prob > threshold
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"Error in LionGuard 2: {e}")
|
| 207 |
return False
|
| 208 |
|
| 209 |
def process_message(message, history_no_mod, history_openai, history_lg):
|
|
|
|
| 210 |
if not message.strip():
|
| 211 |
return history_no_mod, history_openai, history_lg, ""
|
|
|
|
|
|
|
| 212 |
no_mod_response = get_openai_response(message)
|
| 213 |
history_no_mod.append({"role": "user", "content": message})
|
| 214 |
history_no_mod.append({"role": "assistant", "content": no_mod_response})
|
| 215 |
+
|
|
|
|
| 216 |
openai_flagged = openai_moderation(message)
|
| 217 |
history_openai.append({"role": "user", "content": message})
|
|
|
|
| 218 |
if openai_flagged:
|
| 219 |
openai_response = "π« This message has been flagged by OpenAI moderation"
|
| 220 |
history_openai.append({"role": "assistant", "content": openai_response})
|
| 221 |
else:
|
| 222 |
+
openai_response = get_openai_response(message)
|
|
|
|
|
|
|
| 223 |
history_openai.append({"role": "assistant", "content": openai_response})
|
| 224 |
+
|
|
|
|
| 225 |
lg_flagged = lionguard_2(message)
|
| 226 |
history_lg.append({"role": "user", "content": message})
|
|
|
|
| 227 |
if lg_flagged:
|
| 228 |
lg_response = "π« This message has been flagged by LionGuard 2"
|
| 229 |
history_lg.append({"role": "assistant", "content": lg_response})
|
| 230 |
else:
|
| 231 |
+
lg_response = get_openai_response(message)
|
|
|
|
|
|
|
| 232 |
history_lg.append({"role": "assistant", "content": lg_response})
|
| 233 |
+
|
| 234 |
return history_no_mod, history_openai, history_lg, ""
|
| 235 |
|
| 236 |
def clear_all_chats():
|
|
|
|
| 237 |
return [], [], []
|
| 238 |
|
| 239 |
+
# ---- MAIN GRADIO UI ----
|
| 240 |
+
|
| 241 |
+
DISCLAIMER = """
|
| 242 |
+
<div style='background: #fbbf24; color: #1e293b; border-radius: 8px; padding: 14px; margin-bottom: 12px; font-size: 15px; font-weight:500;'>
|
| 243 |
+
β οΈ LionGuard 2 is an experimental ML model and may make mistakes. All entries are logged (anonymised) to improve the model.
|
| 244 |
+
</div>
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
with gr.Blocks(title="LionGuard 2 Demo", theme=gr.themes.Soft()) as demo:
|
| 248 |
+
gr.HTML("<h1 style='text-align:center'>LionGuard 2 Demo</h1>")
|
| 249 |
+
|
| 250 |
+
with gr.Tabs():
|
| 251 |
+
with gr.Tab("Classifier"):
|
| 252 |
+
gr.HTML(DISCLAIMER)
|
| 253 |
+
with gr.Row():
|
| 254 |
+
with gr.Column(scale=1, min_width=400):
|
| 255 |
+
text_input = gr.Textbox(
|
| 256 |
+
label="Enter text to analyze:",
|
| 257 |
+
placeholder="Type your text here...",
|
| 258 |
+
lines=8,
|
| 259 |
+
max_lines=16,
|
| 260 |
+
container=True
|
| 261 |
+
)
|
| 262 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 263 |
+
with gr.Column(scale=1, min_width=400):
|
| 264 |
+
binary_output = gr.HTML(
|
| 265 |
+
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
|
| 266 |
+
)
|
| 267 |
+
category_table = gr.HTML(
|
| 268 |
+
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Category scores will appear here after analysis</div>'
|
| 269 |
+
)
|
| 270 |
+
voting_feedback = gr.HTML(value="")
|
| 271 |
+
current_text_id = gr.Textbox(value="", visible=False)
|
| 272 |
+
|
| 273 |
+
with gr.Row(visible=False) as voting_buttons_row:
|
| 274 |
+
thumbs_up_btn = gr.Button("π Looks Accurate", variant="primary")
|
| 275 |
+
thumbs_down_btn = gr.Button("π Looks Wrong", variant="secondary")
|
| 276 |
+
|
| 277 |
+
def analyze_and_show_voting(text):
|
| 278 |
+
binary_score, category_table_val, text_id, voting_html = analyze_text(text)
|
| 279 |
+
show_vote = gr.update(visible=True) if text_id else gr.update(visible=False)
|
| 280 |
+
return binary_score, category_table_val, text_id, show_vote, "", ""
|
| 281 |
+
|
| 282 |
+
analyze_btn.click(
|
| 283 |
+
analyze_and_show_voting,
|
| 284 |
+
inputs=[text_input],
|
| 285 |
+
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
|
| 286 |
)
|
| 287 |
+
text_input.submit(
|
| 288 |
+
analyze_and_show_voting,
|
| 289 |
+
inputs=[text_input],
|
| 290 |
+
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
)
|
| 292 |
+
thumbs_up_btn.click(vote_thumbs_up, inputs=[current_text_id], outputs=[voting_feedback])
|
| 293 |
+
thumbs_down_btn.click(vote_thumbs_down, inputs=[current_text_id], outputs=[voting_feedback])
|
| 294 |
+
|
| 295 |
+
with gr.Tab("Chatbot Guardrail"):
|
| 296 |
+
gr.HTML(DISCLAIMER)
|
| 297 |
+
with gr.Row():
|
| 298 |
+
with gr.Column(scale=1):
|
| 299 |
+
gr.Markdown("#### π΅ No Moderation")
|
| 300 |
+
chatbot_no_mod = gr.Chatbot(height=400, label="No Moderation", show_label=False, bubble_full_width=False, type='messages')
|
| 301 |
+
with gr.Column(scale=1):
|
| 302 |
+
gr.Markdown("#### π OpenAI Moderation")
|
| 303 |
+
chatbot_openai = gr.Chatbot(height=400, label="OpenAI Moderation", show_label=False, bubble_full_width=False, type='messages')
|
| 304 |
+
with gr.Column(scale=1):
|
| 305 |
+
gr.Markdown("#### π‘οΈ LionGuard 2")
|
| 306 |
+
chatbot_lg = gr.Chatbot(height=400, label="LionGuard 2", show_label=False, bubble_full_width=False, type='messages')
|
| 307 |
+
gr.Markdown("##### π¬ Send Message to All Models")
|
| 308 |
+
with gr.Row():
|
| 309 |
+
message_input = gr.Textbox(
|
| 310 |
+
placeholder="Type your message to compare responses...",
|
| 311 |
+
show_label=False,
|
| 312 |
+
scale=4
|
| 313 |
+
)
|
| 314 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
| 315 |
+
with gr.Row():
|
| 316 |
+
clear_btn = gr.Button("Clear All Chats", variant="stop")
|
| 317 |
+
|
| 318 |
+
send_btn.click(
|
| 319 |
+
process_message,
|
| 320 |
+
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
|
| 321 |
+
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
|
| 322 |
)
|
| 323 |
+
message_input.submit(
|
| 324 |
+
process_message,
|
| 325 |
+
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
|
| 326 |
+
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
|
| 327 |
+
)
|
| 328 |
+
clear_btn.click(
|
| 329 |
+
clear_all_chats,
|
| 330 |
+
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg]
|
| 331 |
+
)
|
| 332 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
if __name__ == "__main__":
|
| 334 |
+
demo.launch()
|