Spaces:
Running
Running
Commit
·
cc30f3f
1
Parent(s):
945bc2f
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -4,14 +4,11 @@ utils.py
|
|
| 4 |
|
| 5 |
# Standard imports
|
| 6 |
import os
|
| 7 |
-
from typing import List
|
| 8 |
|
| 9 |
# Third party imports
|
| 10 |
import numpy as np
|
| 11 |
-
from google import genai
|
| 12 |
from openai import OpenAI
|
| 13 |
-
from sentence_transformers import SentenceTransformer
|
| 14 |
-
from transformers import AutoModel
|
| 15 |
|
| 16 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
| 17 |
|
|
@@ -24,14 +21,11 @@ def get_embeddings(
|
|
| 24 |
) -> List[List[float]]:
|
| 25 |
"""
|
| 26 |
Generate embeddings for a list of texts using OpenAI API synchronously.
|
| 27 |
-
|
| 28 |
Args:
|
| 29 |
texts: List of strings to embed.
|
| 30 |
model: OpenAI embedding model to use (default: text-embedding-3-large).
|
| 31 |
-
|
| 32 |
Returns:
|
| 33 |
A list of embeddings (each embedding is a list of floats).
|
| 34 |
-
|
| 35 |
Raises:
|
| 36 |
Exception: If the OpenAI API call fails.
|
| 37 |
"""
|
|
@@ -45,102 +39,3 @@ def get_embeddings(
|
|
| 45 |
# Extract embeddings from response
|
| 46 |
embeddings = np.array([data.embedding for data in response.data])
|
| 47 |
return embeddings
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
MODEL_CONFIGS = {
|
| 51 |
-
"lionguard-2": {
|
| 52 |
-
"label": "LionGuard 2",
|
| 53 |
-
"repo_id": "govtech/lionguard-2",
|
| 54 |
-
"embedding_strategy": "openai",
|
| 55 |
-
"embedding_model": "text-embedding-3-large",
|
| 56 |
-
},
|
| 57 |
-
"lionguard-2-lite": {
|
| 58 |
-
"label": "LionGuard 2 Lite",
|
| 59 |
-
"repo_id": "govtech/lionguard-2-lite",
|
| 60 |
-
"embedding_strategy": "sentence_transformer",
|
| 61 |
-
"embedding_model": "google/embeddinggemma-300m",
|
| 62 |
-
},
|
| 63 |
-
"lionguard-2.1": {
|
| 64 |
-
"label": "LionGuard 2.1",
|
| 65 |
-
"repo_id": "govtech/lionguard-2.1",
|
| 66 |
-
"embedding_strategy": "gemini",
|
| 67 |
-
"embedding_model": "gemini-embedding-001",
|
| 68 |
-
},
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
DEFAULT_MODEL_KEY = "lionguard-2.1"
|
| 72 |
-
MODEL_CACHE = {}
|
| 73 |
-
EMBEDDING_MODEL_CACHE = {}
|
| 74 |
-
current_model_choice = DEFAULT_MODEL_KEY
|
| 75 |
-
GEMINI_CLIENT = None
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
def resolve_model_key(model_key: str = None) -> str:
|
| 79 |
-
key = model_key or current_model_choice
|
| 80 |
-
if key not in MODEL_CONFIGS:
|
| 81 |
-
raise ValueError(f"Unknown model selection: {key}")
|
| 82 |
-
return key
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
def load_model_instance(model_key: str):
|
| 86 |
-
key = resolve_model_key(model_key)
|
| 87 |
-
if key not in MODEL_CACHE:
|
| 88 |
-
repo_id = MODEL_CONFIGS[key]["repo_id"]
|
| 89 |
-
MODEL_CACHE[key] = AutoModel.from_pretrained(repo_id, trust_remote_code=True)
|
| 90 |
-
return MODEL_CACHE[key]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
def get_sentence_transformer(model_name: str):
|
| 94 |
-
if model_name not in EMBEDDING_MODEL_CACHE:
|
| 95 |
-
EMBEDDING_MODEL_CACHE[model_name] = SentenceTransformer(model_name)
|
| 96 |
-
return EMBEDDING_MODEL_CACHE[model_name]
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def get_gemini_client():
|
| 100 |
-
global GEMINI_CLIENT
|
| 101 |
-
if GEMINI_CLIENT is None:
|
| 102 |
-
api_key = os.getenv("GEMINI_API_KEY")
|
| 103 |
-
if not api_key:
|
| 104 |
-
raise EnvironmentError(
|
| 105 |
-
"GEMINI_API_KEY environment variable is required for LionGuard 2.1."
|
| 106 |
-
)
|
| 107 |
-
GEMINI_CLIENT = genai.Client(api_key=api_key)
|
| 108 |
-
return GEMINI_CLIENT
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
def get_model_embeddings(model_key: str, texts: List[str]) -> np.ndarray:
|
| 112 |
-
key = resolve_model_key(model_key)
|
| 113 |
-
config = MODEL_CONFIGS[key]
|
| 114 |
-
strategy = config["embedding_strategy"]
|
| 115 |
-
model_name = config.get("embedding_model")
|
| 116 |
-
|
| 117 |
-
if strategy == "openai":
|
| 118 |
-
return get_embeddings(texts, model=model_name)
|
| 119 |
-
if strategy == "sentence_transformer":
|
| 120 |
-
embedder = get_sentence_transformer(model_name)
|
| 121 |
-
formatted_texts = [f"task: classification | query: {text}" for text in texts]
|
| 122 |
-
embeddings = embedder.encode(formatted_texts)
|
| 123 |
-
return np.array(embeddings)
|
| 124 |
-
if strategy == "gemini":
|
| 125 |
-
client = get_gemini_client()
|
| 126 |
-
result = client.models.embed_content(model=model_name, contents=texts)
|
| 127 |
-
return np.array([embedding.values for embedding in result.embeddings])
|
| 128 |
-
|
| 129 |
-
raise ValueError(f"Unsupported embedding strategy: {strategy}")
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def predict_with_model(texts: List[str], model_key: str = None) -> Tuple[dict, str]:
|
| 133 |
-
key = resolve_model_key(model_key)
|
| 134 |
-
embeddings = get_model_embeddings(key, texts)
|
| 135 |
-
model = load_model_instance(key)
|
| 136 |
-
return model.predict(embeddings), key
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
def set_active_model(model_key: str) -> str:
|
| 140 |
-
if model_key not in MODEL_CONFIGS:
|
| 141 |
-
return f"⚠️ Unknown model {model_key}"
|
| 142 |
-
global current_model_choice
|
| 143 |
-
current_model_choice = model_key
|
| 144 |
-
load_model_instance(model_key)
|
| 145 |
-
label = MODEL_CONFIGS[model_key]["label"]
|
| 146 |
-
return f"🦁 Using {label} ({model_key})"
|
|
|
|
| 4 |
|
| 5 |
# Standard imports
|
| 6 |
import os
|
| 7 |
+
from typing import List
|
| 8 |
|
| 9 |
# Third party imports
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
from openai import OpenAI
|
|
|
|
|
|
|
| 12 |
|
| 13 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
| 14 |
|
|
|
|
| 21 |
) -> List[List[float]]:
|
| 22 |
"""
|
| 23 |
Generate embeddings for a list of texts using OpenAI API synchronously.
|
|
|
|
| 24 |
Args:
|
| 25 |
texts: List of strings to embed.
|
| 26 |
model: OpenAI embedding model to use (default: text-embedding-3-large).
|
|
|
|
| 27 |
Returns:
|
| 28 |
A list of embeddings (each embedding is a list of floats).
|
|
|
|
| 29 |
Raises:
|
| 30 |
Exception: If the OpenAI API call fails.
|
| 31 |
"""
|
|
|
|
| 39 |
# Extract embeddings from response
|
| 40 |
embeddings = np.array([data.embedding for data in response.data])
|
| 41 |
return embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|