Upload src/streamlit_app.py with huggingface_hub
Browse files- src/streamlit_app.py +22 -5
src/streamlit_app.py
CHANGED
|
@@ -108,11 +108,28 @@ if uploaded_files:
|
|
| 108 |
for uploaded_file in uploaded_files:
|
| 109 |
st.write(f"Processing file: {uploaded_file.name}")
|
| 110 |
with st.spinner('Classifying...'):
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
for i, channel in enumerate(channels):
|
| 117 |
image[:, :, i] = data[:, :, channel-1]
|
| 118 |
|
|
|
|
| 108 |
for uploaded_file in uploaded_files:
|
| 109 |
st.write(f"Processing file: {uploaded_file.name}")
|
| 110 |
with st.spinner('Classifying...'):
|
| 111 |
+
# Create a temporary file path
|
| 112 |
+
import tempfile
|
| 113 |
+
import os
|
| 114 |
+
|
| 115 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.h5', dir='/app/uploads') as tmp_file:
|
| 116 |
+
# Write the uploaded file to disk
|
| 117 |
+
tmp_file.write(uploaded_file.getvalue())
|
| 118 |
+
tmp_path = tmp_file.name
|
| 119 |
+
|
| 120 |
+
try:
|
| 121 |
+
with h5py.File(tmp_path, 'r') as hdf:
|
| 122 |
+
data = np.array(hdf.get('img'))
|
| 123 |
+
data[np.isnan(data)] = 0.000001
|
| 124 |
+
channels = config["dataset_config"]["channels"]
|
| 125 |
+
image = np.zeros((128, 128, len(channels)))
|
| 126 |
+
|
| 127 |
+
# Clean up the temporary file
|
| 128 |
+
os.unlink(tmp_path)
|
| 129 |
+
except Exception as e:
|
| 130 |
+
st.error(f"Error processing file: {str(e)}")
|
| 131 |
+
if os.path.exists(tmp_path):
|
| 132 |
+
os.unlink(tmp_path)
|
| 133 |
for i, channel in enumerate(channels):
|
| 134 |
image[:, :, i] = data[:, :, channel-1]
|
| 135 |
|