HarshShinde0
commited on
Commit
·
a809e1c
1
Parent(s):
abfc282
Prepare for HF Spaces: Fix paths, add .gitignore, update app logic
Browse files- .gitignore +24 -0
- src/app.py +0 -206
- src/deeplabv3plus_model.py +1 -1
- src/densenet121_model.py +2 -2
- src/download_all_models.py +25 -0
- src/inceptionresnetv2_model.py +1 -1
- src/model_downloader.py +22 -63
- src/streamlit_app.py +136 -409
.gitignore
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Models
|
| 2 |
+
models/
|
| 3 |
+
*.pth
|
| 4 |
+
*.h5
|
| 5 |
+
*.npy
|
| 6 |
+
|
| 7 |
+
# Python
|
| 8 |
+
__pycache__/
|
| 9 |
+
*.py[cod]
|
| 10 |
+
*$py.class
|
| 11 |
+
|
| 12 |
+
# Environment
|
| 13 |
+
.env
|
| 14 |
+
.venv
|
| 15 |
+
venv/
|
| 16 |
+
ENV/
|
| 17 |
+
|
| 18 |
+
# IDE
|
| 19 |
+
.vscode/
|
| 20 |
+
.idea/
|
| 21 |
+
|
| 22 |
+
# OS
|
| 23 |
+
.DS_Store
|
| 24 |
+
Thumbs.db
|
src/app.py
DELETED
|
@@ -1,206 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import h5py
|
| 3 |
-
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
import yaml
|
| 7 |
-
import os
|
| 8 |
-
|
| 9 |
-
# Import models
|
| 10 |
-
from mobilenetv2_model import LandslideModel as MobileNetV2Model
|
| 11 |
-
from vgg16_model import LandslideModel as VGG16Model
|
| 12 |
-
from resnet34_model import LandslideModel as ResNet34Model
|
| 13 |
-
from efficientnetb0_model import LandslideModel as EfficientNetB0Model
|
| 14 |
-
from mitb1_model import LandslideModel as MiTB1Model
|
| 15 |
-
from inceptionv4_model import LandslideModel as InceptionV4Model
|
| 16 |
-
from densenet121_model import LandslideModel as DenseNet121Model
|
| 17 |
-
from deeplabv3plus_model import LandslideModel as DeepLabV3PlusModel
|
| 18 |
-
from resnext50_32x4d_model import LandslideModel as ResNeXt50_32X4DModel
|
| 19 |
-
from se_resnet50_model import LandslideModel as SEResNet50Model
|
| 20 |
-
from se_resnext50_32x4d_model import LandslideModel as SEResNeXt50_32X4DModel
|
| 21 |
-
from segformer_model import LandslideModel as SegFormerB2Model
|
| 22 |
-
from inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
| 23 |
-
|
| 24 |
-
# Load the configuration file
|
| 25 |
-
config = """
|
| 26 |
-
model_config:
|
| 27 |
-
model_type: "mobilenet_v2"
|
| 28 |
-
in_channels: 14
|
| 29 |
-
num_classes: 1
|
| 30 |
-
encoder_weights: "imagenet"
|
| 31 |
-
wce_weight: 0.5
|
| 32 |
-
|
| 33 |
-
dataset_config:
|
| 34 |
-
num_classes: 1
|
| 35 |
-
num_channels: 14
|
| 36 |
-
channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
|
| 37 |
-
normalize: False
|
| 38 |
-
|
| 39 |
-
train_config:
|
| 40 |
-
dataset_path: ""
|
| 41 |
-
checkpoint_path: "checkpoints"
|
| 42 |
-
seed: 42
|
| 43 |
-
train_val_split: 0.8
|
| 44 |
-
batch_size: 16
|
| 45 |
-
num_epochs: 100
|
| 46 |
-
lr: 0.001
|
| 47 |
-
device: "cuda:0"
|
| 48 |
-
save_config: True
|
| 49 |
-
experiment_name: "mobilenet_v2"
|
| 50 |
-
|
| 51 |
-
logging_config:
|
| 52 |
-
wandb_project: "l4s"
|
| 53 |
-
wandb_entity: "Silvamillion"
|
| 54 |
-
"""
|
| 55 |
-
|
| 56 |
-
config = yaml.safe_load(config)
|
| 57 |
-
|
| 58 |
-
# Model descriptions
|
| 59 |
-
model_descriptions = {
|
| 60 |
-
"MobileNetV2": {"path": "mobilenetv2.pth", "type": "mobilenet_v2", "description": "MobileNetV2 is a lightweight deep learning model for image classification and segmentation."},
|
| 61 |
-
"VGG16": {"path": "vgg16.pth", "type": "vgg16", "description": "VGG16 is a popular deep learning model known for its simplicity and depth."},
|
| 62 |
-
"ResNet34": {"path": "resnet34.pth", "type": "resnet34", "description": "ResNet34 is a deep residual network that helps in training very deep networks."},
|
| 63 |
-
"EfficientNetB0": {"path": "effucientnetb0.pth", "type": "efficientnet_b0", "description": "EfficientNetB0 is part of the EfficientNet family, known for its efficiency and performance."},
|
| 64 |
-
"MiT-B1": {"path": "mitb1.pth", "type": "mit_b1", "description": "MiT-B1 is a transformer-based model designed for segmentation tasks."},
|
| 65 |
-
"InceptionV4": {"path": "inceptionv4.pth", "type": "inceptionv4", "description": "InceptionV4 is a convolutional neural network known for its inception modules."},
|
| 66 |
-
"DeepLabV3+": {"path": "deeplabv3.pth", "type": "deeplabv3+", "description": "DeepLabV3+ is an advanced model for semantic image segmentation."},
|
| 67 |
-
"DenseNet121": {"path": "densenet121.pth", "type": "densenet121", "description": "DenseNet121 is a densely connected convolutional network for image classification and segmentation."},
|
| 68 |
-
"ResNeXt50_32X4D": {"path": "resnext50-32x4d.pth", "type": "resnext50_32x4d", "description": "ResNeXt50_32X4D is a highly modularized network aimed at improving accuracy."},
|
| 69 |
-
"SEResNet50": {"path": "se_resnet50.pth", "type": "se_resnet50", "description": "SEResNet50 is a ResNet model with squeeze-and-excitation blocks for better feature recalibration."},
|
| 70 |
-
"SEResNeXt50_32X4D": {"path": "se_resnext50_32x4d.pth", "type": "se_resnext50_32x4d", "description": "SEResNeXt50_32X4D combines ResNeXt and SE blocks for improved performance."},
|
| 71 |
-
"SegFormerB2": {"path": "segformer.pth", "type": "segformer_b2", "description": "SegFormerB2 is a transformer-based model for semantic segmentation."},
|
| 72 |
-
"InceptionResNetV2": {"path": "inceptionresnetv2.pth", "type": "inceptionresnetv2", "description": "InceptionResNetV2 is a hybrid model combining Inception and ResNet architectures."},
|
| 73 |
-
}
|
| 74 |
-
|
| 75 |
-
# Streamlit app
|
| 76 |
-
st.set_page_config(page_title="Landslide Detection", layout="wide")
|
| 77 |
-
|
| 78 |
-
st.title("Landslide Detection")
|
| 79 |
-
st.markdown("""
|
| 80 |
-
## Instructions
|
| 81 |
-
1. Select a model from the sidebar or choose to run all models.
|
| 82 |
-
2. Upload one or more `.h5` files.
|
| 83 |
-
3. The app will process the files and display the input image, prediction, and overlay.
|
| 84 |
-
4. You can download the prediction results.
|
| 85 |
-
""")
|
| 86 |
-
|
| 87 |
-
# Sidebar for model selection
|
| 88 |
-
st.sidebar.title("Model Selection")
|
| 89 |
-
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 90 |
-
if model_option == "Select a single model":
|
| 91 |
-
model_type = st.sidebar.selectbox("Select Model", list(model_descriptions.keys()))
|
| 92 |
-
config['model_config']['model_type'] = model_descriptions[model_type]['type']
|
| 93 |
-
if model_type == "DeepLabV3+":
|
| 94 |
-
model_class = DeepLabV3PlusModel
|
| 95 |
-
else:
|
| 96 |
-
model_class = locals()[model_type.replace("-", "") + "Model"]
|
| 97 |
-
model_path = model_descriptions[model_type]['path']
|
| 98 |
-
|
| 99 |
-
# Display model details in the sidebar
|
| 100 |
-
st.sidebar.markdown(f"**Model Type:** {model_descriptions[model_type]['type']}")
|
| 101 |
-
st.sidebar.markdown(f"**Model Path:** {model_descriptions[model_type]['path']}")
|
| 102 |
-
st.sidebar.markdown(f"**Description:** {model_descriptions[model_type]['description']}")
|
| 103 |
-
|
| 104 |
-
# Main content
|
| 105 |
-
st.header("Upload Data")
|
| 106 |
-
uploaded_files = st.file_uploader("Choose .h5 files...", type="h5", accept_multiple_files=True)
|
| 107 |
-
if uploaded_files:
|
| 108 |
-
for uploaded_file in uploaded_files:
|
| 109 |
-
st.write(f"Processing file: {uploaded_file.name}")
|
| 110 |
-
with st.spinner('Classifying...'):
|
| 111 |
-
with h5py.File(uploaded_file, 'r') as hdf:
|
| 112 |
-
data = np.array(hdf.get('img'))
|
| 113 |
-
data[np.isnan(data)] = 0.000001
|
| 114 |
-
channels = config["dataset_config"]["channels"]
|
| 115 |
-
image = np.zeros((128, 128, len(channels)))
|
| 116 |
-
for i, channel in enumerate(channels):
|
| 117 |
-
image[:, :, i] = data[:, :, channel-1]
|
| 118 |
-
|
| 119 |
-
# Transform the image to the required format
|
| 120 |
-
image = image.transpose((2, 0, 1)) # (H, W, C) to (C, H, W)
|
| 121 |
-
image = torch.from_numpy(image).float().unsqueeze(0) # Add batch dimension
|
| 122 |
-
|
| 123 |
-
if model_option == "Select a single model":
|
| 124 |
-
# Process the image with the selected model
|
| 125 |
-
st.write(f"Using model: {model_type}")
|
| 126 |
-
|
| 127 |
-
# Load the model
|
| 128 |
-
model = model_class(config)
|
| 129 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 130 |
-
model.eval()
|
| 131 |
-
|
| 132 |
-
# Make prediction
|
| 133 |
-
with torch.no_grad():
|
| 134 |
-
prediction = model(image)
|
| 135 |
-
prediction = torch.sigmoid(prediction).cpu().numpy()
|
| 136 |
-
|
| 137 |
-
# Display prediction
|
| 138 |
-
st.header(f"Prediction Results - {model_type}")
|
| 139 |
-
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 140 |
-
img = image.squeeze().permute(1, 2, 0).numpy()
|
| 141 |
-
img = (img - img.min()) / (img.max() - img.min()) # Normalize the image to [0, 1] range for display
|
| 142 |
-
ax[0].imshow(img[:, :, 1:4]) # Display first three channels as RGB
|
| 143 |
-
ax[0].set_title("Input Image")
|
| 144 |
-
ax[1].imshow(prediction.squeeze() > 0.5, cmap='plasma') # Apply threshold
|
| 145 |
-
ax[1].set_title("Prediction")
|
| 146 |
-
ax[2].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 147 |
-
ax[2].imshow(prediction.squeeze() > 0.5, cmap='plasma', alpha=0.3) # Overlay prediction
|
| 148 |
-
ax[2].set_title("Overlay")
|
| 149 |
-
st.pyplot(fig)
|
| 150 |
-
|
| 151 |
-
# Option to download the prediction
|
| 152 |
-
st.write(f"Download the prediction as a .npy file for {model_type}:")
|
| 153 |
-
npy_data = prediction.squeeze()
|
| 154 |
-
st.download_button(
|
| 155 |
-
label=f"Download Prediction - {model_type}",
|
| 156 |
-
data=npy_data.tobytes(),
|
| 157 |
-
file_name=f"{uploaded_file.name.split('.')[0]}_{model_type}_prediction.npy",
|
| 158 |
-
mime="application/octet-stream"
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
else:
|
| 162 |
-
# Process the image with each model
|
| 163 |
-
for model_name, model_info in model_descriptions.items():
|
| 164 |
-
st.write(f"Using model: {model_name}")
|
| 165 |
-
if model_name == "DeepLabV3+":
|
| 166 |
-
model_class = DeepLabV3PlusModel
|
| 167 |
-
else:
|
| 168 |
-
model_class = locals()[model_name.replace("-", "") + "Model"]
|
| 169 |
-
model_path = model_info['path']
|
| 170 |
-
config['model_config']['model_type'] = model_info['type']
|
| 171 |
-
|
| 172 |
-
# Load the model
|
| 173 |
-
model = model_class(config)
|
| 174 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 175 |
-
model.eval()
|
| 176 |
-
|
| 177 |
-
# Make prediction
|
| 178 |
-
with torch.no_grad():
|
| 179 |
-
prediction = model(image)
|
| 180 |
-
prediction = torch.sigmoid(prediction).cpu().numpy()
|
| 181 |
-
|
| 182 |
-
# Display prediction
|
| 183 |
-
st.header(f"Prediction Results - {model_name}")
|
| 184 |
-
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 185 |
-
img = image.squeeze().permute(1, 2, 0).numpy()
|
| 186 |
-
img = (img - img.min()) / (img.max() - img.min()) # Normalize the image to [0, 1] range for display
|
| 187 |
-
ax[0].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 188 |
-
ax[0].set_title("Input Image")
|
| 189 |
-
ax[1].imshow(prediction.squeeze() > 0.5, cmap='plasma') # Apply threshold
|
| 190 |
-
ax[1].set_title("Prediction")
|
| 191 |
-
ax[2].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 192 |
-
ax[2].imshow(prediction.squeeze() > 0.5, cmap='plasma', alpha=0.3) # Overlay prediction
|
| 193 |
-
ax[2].set_title("Overlay")
|
| 194 |
-
st.pyplot(fig)
|
| 195 |
-
|
| 196 |
-
# Option to download the prediction
|
| 197 |
-
st.write(f"Download the prediction as a .npy file for {model_name}:")
|
| 198 |
-
npy_data = prediction.squeeze()
|
| 199 |
-
st.download_button(
|
| 200 |
-
label=f"Download Prediction - {model_name}",
|
| 201 |
-
data=npy_data.tobytes(),
|
| 202 |
-
file_name=f"{uploaded_file.name.split('.')[0]}_{model_name}_prediction.npy",
|
| 203 |
-
mime="application/octet-stream"
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
st.success('Done!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/deeplabv3plus_model.py
CHANGED
|
@@ -10,7 +10,7 @@ from torch.optim.lr_scheduler import StepLR
|
|
| 10 |
class smp_model(nn.Module):
|
| 11 |
def __init__(self, in_channels, out_channels, model_type, num_classes, encoder_weights):
|
| 12 |
super(smp_model, self).__init__()
|
| 13 |
-
if model_type == "
|
| 14 |
self.model = smp.DeepLabV3Plus(
|
| 15 |
encoder_name="resnet50", # Change this to a valid encoder
|
| 16 |
encoder_weights=encoder_weights,
|
|
|
|
| 10 |
class smp_model(nn.Module):
|
| 11 |
def __init__(self, in_channels, out_channels, model_type, num_classes, encoder_weights):
|
| 12 |
super(smp_model, self).__init__()
|
| 13 |
+
if model_type == "deeplabv3plus":
|
| 14 |
self.model = smp.DeepLabV3Plus(
|
| 15 |
encoder_name="resnet50", # Change this to a valid encoder
|
| 16 |
encoder_weights=encoder_weights,
|
src/densenet121_model.py
CHANGED
|
@@ -18,7 +18,7 @@ class smp_model(nn.Module):
|
|
| 18 |
)
|
| 19 |
|
| 20 |
def load_pretrained_weights(self):
|
| 21 |
-
|
| 22 |
conv1_weight = state_dict['features.conv0.weight']
|
| 23 |
new_conv1_weight = torch.zeros((conv1_weight.shape[0], 14, *conv1_weight.shape[2:]))
|
| 24 |
new_conv1_weight[:, :3, :, :] = conv1_weight # Copy weights for the first 3 channels
|
|
@@ -50,7 +50,7 @@ class LandslideModel(pl.LightningModule):
|
|
| 50 |
model_type=model_type,
|
| 51 |
num_classes=num_classes,
|
| 52 |
encoder_weights=encoder_weights)
|
| 53 |
-
self.model.load_pretrained_weights()
|
| 54 |
|
| 55 |
self.weights = torch.tensor([5], dtype=torch.float32).to(self.device)
|
| 56 |
self.wce = nn.BCELoss(weight=self.weights)
|
|
|
|
| 18 |
)
|
| 19 |
|
| 20 |
def load_pretrained_weights(self):
|
| 21 |
+
# self.model.load_pretrained_weights()
|
| 22 |
conv1_weight = state_dict['features.conv0.weight']
|
| 23 |
new_conv1_weight = torch.zeros((conv1_weight.shape[0], 14, *conv1_weight.shape[2:]))
|
| 24 |
new_conv1_weight[:, :3, :, :] = conv1_weight # Copy weights for the first 3 channels
|
|
|
|
| 50 |
model_type=model_type,
|
| 51 |
num_classes=num_classes,
|
| 52 |
encoder_weights=encoder_weights)
|
| 53 |
+
# self.model.load_pretrained_weights()
|
| 54 |
|
| 55 |
self.weights = torch.tensor([5], dtype=torch.float32).to(self.device)
|
| 56 |
self.wce = nn.BCELoss(weight=self.weights)
|
src/download_all_models.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# Add the parent directory to sys.path to allow imports from 'src'
|
| 5 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
| 6 |
+
|
| 7 |
+
from src.model_downloader import ModelDownloader
|
| 8 |
+
|
| 9 |
+
def download_all():
|
| 10 |
+
print("Starting download of all models...")
|
| 11 |
+
downloader = ModelDownloader()
|
| 12 |
+
models = downloader.list_available_models()
|
| 13 |
+
|
| 14 |
+
for model_name in models:
|
| 15 |
+
try:
|
| 16 |
+
print(f"Checking/Downloading {model_name}...")
|
| 17 |
+
path = downloader.download_model(model_name)
|
| 18 |
+
print(f"✓ {model_name} is ready at {path}")
|
| 19 |
+
except Exception as e:
|
| 20 |
+
print(f"✗ Failed to download {model_name}: {e}")
|
| 21 |
+
|
| 22 |
+
print("\nAll downloads completed.")
|
| 23 |
+
|
| 24 |
+
if __name__ == "__main__":
|
| 25 |
+
download_all()
|
src/inceptionresnetv2_model.py
CHANGED
|
@@ -11,7 +11,7 @@ class smp_model(nn.Module):
|
|
| 11 |
def __init__(self, in_channels, out_channels, model_type, num_classes, encoder_weights):
|
| 12 |
super(smp_model, self).__init__()
|
| 13 |
self.model = smp.Unet(
|
| 14 |
-
encoder_name=
|
| 15 |
encoder_weights=encoder_weights,
|
| 16 |
in_channels=in_channels,
|
| 17 |
classes=num_classes,
|
|
|
|
| 11 |
def __init__(self, in_channels, out_channels, model_type, num_classes, encoder_weights):
|
| 12 |
super(smp_model, self).__init__()
|
| 13 |
self.model = smp.Unet(
|
| 14 |
+
encoder_name="inceptionresnetv2",
|
| 15 |
encoder_weights=encoder_weights,
|
| 16 |
in_channels=in_channels,
|
| 17 |
classes=num_classes,
|
src/model_downloader.py
CHANGED
|
@@ -8,11 +8,11 @@ from tqdm.auto import tqdm
|
|
| 8 |
class ModelDownloader:
|
| 9 |
def __init__(self):
|
| 10 |
# Create models directory for caching
|
| 11 |
-
self.models_dir = Path("
|
| 12 |
self.models_dir.mkdir(exist_ok=True)
|
| 13 |
|
| 14 |
# HuggingFace model repository details
|
| 15 |
-
self.hf_model_url = "https://huggingface.co/harshinde/
|
| 16 |
|
| 17 |
# Model mapping with file names
|
| 18 |
self.model_files = {
|
|
@@ -26,47 +26,47 @@ class ModelDownloader:
|
|
| 26 |
},
|
| 27 |
"efficientnetb0": {
|
| 28 |
"file": "efficientnetb0.pth",
|
| 29 |
-
"url": f"{self.hf_model_url}
|
| 30 |
},
|
| 31 |
"inceptionresnetv2": {
|
| 32 |
"file": "inceptionresnetv2.pth",
|
| 33 |
-
"
|
| 34 |
},
|
| 35 |
"inceptionv4": {
|
| 36 |
"file": "inceptionv4.pth",
|
| 37 |
-
"
|
| 38 |
},
|
| 39 |
"mitb1": {
|
| 40 |
"file": "mitb1.pth",
|
| 41 |
-
"
|
| 42 |
},
|
| 43 |
"mobilenetv2": {
|
| 44 |
"file": "mobilenetv2.pth",
|
| 45 |
-
"
|
| 46 |
},
|
| 47 |
"resnet34": {
|
| 48 |
"file": "resnet34.pth",
|
| 49 |
-
"
|
| 50 |
},
|
| 51 |
"resnext50_32x4d": {
|
| 52 |
"file": "resnext50-32x4d.pth",
|
| 53 |
-
"
|
| 54 |
},
|
| 55 |
"se_resnet50": {
|
| 56 |
"file": "se_resnet50.pth",
|
| 57 |
-
"
|
| 58 |
},
|
| 59 |
"se_resnext50_32x4d": {
|
| 60 |
"file": "se_resnext50_32x4d.pth",
|
| 61 |
-
"
|
| 62 |
},
|
| 63 |
"segformer": {
|
| 64 |
"file": "segformer.pth",
|
| 65 |
-
"
|
| 66 |
},
|
| 67 |
"vgg16": {
|
| 68 |
"file": "vgg16.pth",
|
| 69 |
-
"
|
| 70 |
}
|
| 71 |
}
|
| 72 |
|
|
@@ -86,7 +86,15 @@ class ModelDownloader:
|
|
| 86 |
|
| 87 |
if not model_path.exists():
|
| 88 |
print(f"Downloading {model_name} model...")
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
response.raise_for_status()
|
| 91 |
|
| 92 |
total_size = int(response.headers.get('content-length', 0))
|
|
@@ -102,55 +110,6 @@ class ModelDownloader:
|
|
| 102 |
print(f"Model downloaded successfully to {model_path}")
|
| 103 |
|
| 104 |
return str(model_path)
|
| 105 |
-
|
| 106 |
-
# If model already exists, return path
|
| 107 |
-
if model_path.exists():
|
| 108 |
-
return str(model_path)
|
| 109 |
-
|
| 110 |
-
# Construct download URL for the specific model
|
| 111 |
-
download_url = f"{self.kaggle_model_url}/{model_info['id']}/1"
|
| 112 |
-
|
| 113 |
-
try:
|
| 114 |
-
st.info(f"Downloading model {model_name} from Kaggle Models...")
|
| 115 |
-
progress_bar = st.progress(0)
|
| 116 |
-
|
| 117 |
-
# Download with progress
|
| 118 |
-
response = requests.get(download_url, stream=True)
|
| 119 |
-
response.raise_for_status()
|
| 120 |
-
|
| 121 |
-
total_size = int(response.headers.get('content-length', 0))
|
| 122 |
-
block_size = 1024 # 1 Kibibyte
|
| 123 |
-
|
| 124 |
-
with open(model_path, 'wb') as f:
|
| 125 |
-
for i, data in enumerate(response.iter_content(block_size)):
|
| 126 |
-
progress_bar.progress(min(i * block_size / total_size, 1.0))
|
| 127 |
-
f.write(data)
|
| 128 |
-
|
| 129 |
-
st.success(f"Successfully downloaded {model_name}")
|
| 130 |
-
return str(model_path)
|
| 131 |
-
|
| 132 |
-
except requests.exceptions.RequestException as e:
|
| 133 |
-
raise Exception(f"Failed to download model from Kaggle: {str(e)}")
|
| 134 |
-
|
| 135 |
-
def get_model_path(self, model_name):
|
| 136 |
-
"""
|
| 137 |
-
Get the path for a model file, downloading it from Kaggle if necessary
|
| 138 |
-
Args:
|
| 139 |
-
model_name (str): Name of the model (e.g., 'deeplabv3plus', 'densenet121', etc.)
|
| 140 |
-
Returns:
|
| 141 |
-
str: Path to the model file
|
| 142 |
-
"""
|
| 143 |
-
if model_name not in self.model_files:
|
| 144 |
-
raise ValueError(f"Model {model_name} not found. Available models: {list(self.model_files.keys())}")
|
| 145 |
-
|
| 146 |
-
model_info = self.model_files[model_name]
|
| 147 |
-
model_path = self.models_dir / model_info['file']
|
| 148 |
-
|
| 149 |
-
# If model doesn't exist locally, download it
|
| 150 |
-
if not model_path.exists():
|
| 151 |
-
return self.download_from_kaggle(model_name)
|
| 152 |
-
|
| 153 |
-
return str(model_path)
|
| 154 |
|
| 155 |
def list_available_models(self):
|
| 156 |
"""
|
|
|
|
| 8 |
class ModelDownloader:
|
| 9 |
def __init__(self):
|
| 10 |
# Create models directory for caching
|
| 11 |
+
self.models_dir = Path("models").resolve()
|
| 12 |
self.models_dir.mkdir(exist_ok=True)
|
| 13 |
|
| 14 |
# HuggingFace model repository details
|
| 15 |
+
self.hf_model_url = "https://huggingface.co/harshinde/DeepSlide_Models/resolve/main/"
|
| 16 |
|
| 17 |
# Model mapping with file names
|
| 18 |
self.model_files = {
|
|
|
|
| 26 |
},
|
| 27 |
"efficientnetb0": {
|
| 28 |
"file": "efficientnetb0.pth",
|
| 29 |
+
"url": f"{self.hf_model_url}effucientnetb0.pth"
|
| 30 |
},
|
| 31 |
"inceptionresnetv2": {
|
| 32 |
"file": "inceptionresnetv2.pth",
|
| 33 |
+
"url": f"{self.hf_model_url}inceptionresnetv2.pth"
|
| 34 |
},
|
| 35 |
"inceptionv4": {
|
| 36 |
"file": "inceptionv4.pth",
|
| 37 |
+
"url": f"{self.hf_model_url}inceptionv4.pth"
|
| 38 |
},
|
| 39 |
"mitb1": {
|
| 40 |
"file": "mitb1.pth",
|
| 41 |
+
"url": f"{self.hf_model_url}mitb1.pth"
|
| 42 |
},
|
| 43 |
"mobilenetv2": {
|
| 44 |
"file": "mobilenetv2.pth",
|
| 45 |
+
"url": f"{self.hf_model_url}mobilenetv2.pth"
|
| 46 |
},
|
| 47 |
"resnet34": {
|
| 48 |
"file": "resnet34.pth",
|
| 49 |
+
"url": f"{self.hf_model_url}resnet34.pth"
|
| 50 |
},
|
| 51 |
"resnext50_32x4d": {
|
| 52 |
"file": "resnext50-32x4d.pth",
|
| 53 |
+
"url": f"{self.hf_model_url}resnext50-32x4d.pth"
|
| 54 |
},
|
| 55 |
"se_resnet50": {
|
| 56 |
"file": "se_resnet50.pth",
|
| 57 |
+
"url": f"{self.hf_model_url}se_resnet50.pth"
|
| 58 |
},
|
| 59 |
"se_resnext50_32x4d": {
|
| 60 |
"file": "se_resnext50_32x4d.pth",
|
| 61 |
+
"url": f"{self.hf_model_url}se_resnext50_32x4d.pth"
|
| 62 |
},
|
| 63 |
"segformer": {
|
| 64 |
"file": "segformer.pth",
|
| 65 |
+
"url": f"{self.hf_model_url}segformer.pth"
|
| 66 |
},
|
| 67 |
"vgg16": {
|
| 68 |
"file": "vgg16.pth",
|
| 69 |
+
"url": f"{self.hf_model_url}vgg16.pth"
|
| 70 |
}
|
| 71 |
}
|
| 72 |
|
|
|
|
| 86 |
|
| 87 |
if not model_path.exists():
|
| 88 |
print(f"Downloading {model_name} model...")
|
| 89 |
+
# Use 'url' if available, otherwise fallback or error (logic simplified for now as per plan)
|
| 90 |
+
if 'url' in model_info:
|
| 91 |
+
url = model_info['url']
|
| 92 |
+
else:
|
| 93 |
+
# Fallback for models without explicit URL in the map (though all seem to have it or use ID)
|
| 94 |
+
# Assuming the pattern from init for others
|
| 95 |
+
url = f"{self.hf_model_url}{model_info['file']}"
|
| 96 |
+
|
| 97 |
+
response = requests.get(url, stream=True)
|
| 98 |
response.raise_for_status()
|
| 99 |
|
| 100 |
total_size = int(response.headers.get('content-length', 0))
|
|
|
|
| 110 |
print(f"Model downloaded successfully to {model_path}")
|
| 111 |
|
| 112 |
return str(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
def list_available_models(self):
|
| 115 |
"""
|
src/streamlit_app.py
CHANGED
|
@@ -1,10 +1,17 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import h5py
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import yaml
|
| 7 |
import os
|
|
|
|
| 8 |
|
| 9 |
# Import models
|
| 10 |
from src.mobilenetv2_model import LandslideModel as MobileNetV2Model
|
|
@@ -15,11 +22,12 @@ from src.mitb1_model import LandslideModel as MiTB1Model
|
|
| 15 |
from src.inceptionv4_model import LandslideModel as InceptionV4Model
|
| 16 |
from src.densenet121_model import LandslideModel as DenseNet121Model
|
| 17 |
from src.deeplabv3plus_model import LandslideModel as DeepLabV3PlusModel
|
| 18 |
-
from src.resnext50_32x4d_model import LandslideModel as
|
| 19 |
from src.se_resnet50_model import LandslideModel as SEResNet50Model
|
| 20 |
-
from src.se_resnext50_32x4d_model import LandslideModel as
|
| 21 |
from src.segformer_model import LandslideModel as SegFormerB2Model
|
| 22 |
from src.inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
|
|
|
| 23 |
|
| 24 |
# Define available models
|
| 25 |
AVAILABLE_MODELS = {
|
|
@@ -31,10 +39,10 @@ AVAILABLE_MODELS = {
|
|
| 31 |
"inceptionv4": {"name": "InceptionV4", "type": "inception_v4"},
|
| 32 |
"densenet121": {"name": "DenseNet121", "type": "densenet121"},
|
| 33 |
"deeplabv3plus": {"name": "DeepLabV3Plus", "type": "deeplabv3plus"},
|
| 34 |
-
"resnext50": {"name": "ResNeXt50", "type": "resnext50_32x4d"},
|
| 35 |
-
"seresnet50": {"name": "SEResNet50", "type": "se_resnet50"},
|
| 36 |
-
"seresnext50": {"name": "SEResNeXt50", "type": "se_resnext50_32x4d"},
|
| 37 |
-
"segformerb2": {"name": "SegFormerB2", "type": "segformer_b2"},
|
| 38 |
"inceptionresnetv2": {"name": "InceptionResNetV2", "type": "inception_resnet_v2"}
|
| 39 |
}
|
| 40 |
|
|
@@ -43,13 +51,14 @@ MODEL_DESCRIPTIONS = {
|
|
| 43 |
model_key: {
|
| 44 |
"type": model_info["type"],
|
| 45 |
"description": f"{model_info['name']} - A model for landslide detection and segmentation.",
|
| 46 |
-
"name": model_info["name"]
|
|
|
|
| 47 |
}
|
| 48 |
for model_key, model_info in AVAILABLE_MODELS.items()
|
| 49 |
}
|
| 50 |
|
| 51 |
# Load the configuration file
|
| 52 |
-
|
| 53 |
model_config:
|
| 54 |
model_type: "mobilenet_v2"
|
| 55 |
in_channels: 14
|
|
@@ -74,9 +83,89 @@ train_config:
|
|
| 74 |
device: "cuda:0"
|
| 75 |
save_config: True
|
| 76 |
experiment_name: "mobilenet_v2"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
"""
|
| 78 |
|
| 79 |
-
config = yaml.safe_load(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Streamlit app
|
| 82 |
st.set_page_config(page_title="Landslide Detection", layout="wide")
|
|
@@ -94,10 +183,10 @@ st.markdown("""
|
|
| 94 |
st.sidebar.title("Model Selection")
|
| 95 |
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 96 |
|
|
|
|
| 97 |
if model_option == "Select a single model":
|
| 98 |
selected_model_key = st.sidebar.selectbox("Select Model", list(MODEL_DESCRIPTIONS.keys()))
|
| 99 |
selected_model_info = MODEL_DESCRIPTIONS[selected_model_key]
|
| 100 |
-
config['model_config']['model_type'] = selected_model_info['type']
|
| 101 |
|
| 102 |
# Display model details in the sidebar
|
| 103 |
st.sidebar.markdown("### Model Details")
|
|
@@ -127,7 +216,6 @@ if uploaded_files:
|
|
| 127 |
with st.spinner('Classifying...'):
|
| 128 |
try:
|
| 129 |
# Read the file directly using BytesIO
|
| 130 |
-
import io
|
| 131 |
bytes_data = uploaded_file.getvalue()
|
| 132 |
bytes_io = io.BytesIO(bytes_data)
|
| 133 |
|
|
@@ -139,413 +227,52 @@ if uploaded_files:
|
|
| 139 |
data = np.array(hdf.get('img'))
|
| 140 |
data[np.isnan(data)] = 0.000001
|
| 141 |
channels = config["dataset_config"]["channels"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
image = np.zeros((128, 128, len(channels)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
for
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
image = np.transpose(image, (2, 0, 1))
|
| 149 |
|
| 150 |
if model_option == "Select a single model":
|
| 151 |
-
|
| 152 |
-
model_class_name = AVAILABLE_MODELS[selected_model_key]['name'].replace('-', '') + 'Model'
|
| 153 |
-
model_class = locals()[model_class_name]
|
| 154 |
-
|
| 155 |
-
# Initialize model downloader
|
| 156 |
-
from model_downloader import ModelDownloader
|
| 157 |
-
downloader = ModelDownloader()
|
| 158 |
-
|
| 159 |
-
try:
|
| 160 |
-
# Download/get model path
|
| 161 |
-
model_path = downloader.download_model(selected_model_key)
|
| 162 |
-
st.info(f"Using model from: {model_path}")
|
| 163 |
-
|
| 164 |
-
# Load the model
|
| 165 |
-
model = model_class(config)
|
| 166 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 167 |
-
model.eval()
|
| 168 |
-
|
| 169 |
-
# Make prediction
|
| 170 |
-
with torch.no_grad():
|
| 171 |
-
prediction = model(torch.from_numpy(image).unsqueeze(0).float())
|
| 172 |
-
prediction = torch.sigmoid(prediction).numpy()
|
| 173 |
-
|
| 174 |
-
st.header(f"Prediction Results - {selected_model_info['name']}")
|
| 175 |
-
|
| 176 |
-
# Create columns for input image, prediction, and overlay
|
| 177 |
-
col1, col2, col3 = st.columns(3)
|
| 178 |
-
|
| 179 |
-
# Display input image
|
| 180 |
-
with col1:
|
| 181 |
-
st.write("Input Image")
|
| 182 |
-
plt.figure(figsize=(8, 8))
|
| 183 |
-
plt.imshow(selected_channels[0], cmap='viridis')
|
| 184 |
-
plt.colorbar()
|
| 185 |
-
plt.axis('off')
|
| 186 |
-
st.pyplot(plt)
|
| 187 |
-
|
| 188 |
-
# Display prediction
|
| 189 |
-
with col2:
|
| 190 |
-
st.write("Prediction")
|
| 191 |
-
plt.figure(figsize=(8, 8))
|
| 192 |
-
plt.imshow(prediction.squeeze(), cmap='viridis')
|
| 193 |
-
plt.colorbar()
|
| 194 |
-
plt.axis('off')
|
| 195 |
-
st.pyplot(plt)
|
| 196 |
-
|
| 197 |
-
# Display overlay
|
| 198 |
-
with col3:
|
| 199 |
-
st.write("Overlay")
|
| 200 |
-
plt.figure(figsize=(8, 8))
|
| 201 |
-
plt.imshow(selected_channels[0], cmap='viridis')
|
| 202 |
-
plt.imshow(prediction.squeeze(), cmap='viridis', alpha=0.5)
|
| 203 |
-
plt.colorbar()
|
| 204 |
-
plt.axis('off')
|
| 205 |
-
st.pyplot(plt)
|
| 206 |
-
|
| 207 |
-
# Download button for prediction
|
| 208 |
-
st.write(f"Download the prediction as a .npy file for {selected_model_info['name']}:")
|
| 209 |
-
npy_data = prediction.squeeze()
|
| 210 |
-
st.download_button(
|
| 211 |
-
label=f"Download Prediction - {selected_model_info['name']}",
|
| 212 |
-
data=npy_data.tobytes(),
|
| 213 |
-
file_name=f"{uploaded_file.name.split('.')[0]}_{selected_model_key}_prediction.npy",
|
| 214 |
-
mime="application/octet-stream"
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
except Exception as e:
|
| 218 |
-
st.error(f"Error with model {selected_model_info['name']}: {str(e)}")
|
| 219 |
else:
|
| 220 |
-
# Process the image with each model
|
| 221 |
for model_key, model_info in MODEL_DESCRIPTIONS.items():
|
| 222 |
-
|
| 223 |
-
config['model_config']['model_type'] = model_info['type']
|
| 224 |
-
|
| 225 |
-
# Get the model class from AVAILABLE_MODELS
|
| 226 |
-
model_class_name = AVAILABLE_MODELS[model_key]['name'].replace('-', '') + 'Model'
|
| 227 |
-
model_class = locals()[model_class_name]
|
| 228 |
-
|
| 229 |
-
# Initialize model downloader
|
| 230 |
-
from model_downloader import ModelDownloader
|
| 231 |
-
downloader = ModelDownloader()
|
| 232 |
-
|
| 233 |
-
try:
|
| 234 |
-
# Download/get model path
|
| 235 |
-
model_path = downloader.download_model(model_key)
|
| 236 |
-
st.info(f"Using model from: {model_path}")
|
| 237 |
-
|
| 238 |
-
# Load the model
|
| 239 |
-
model = model_class(config)
|
| 240 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 241 |
-
model.eval()
|
| 242 |
-
|
| 243 |
-
# Make prediction
|
| 244 |
-
with torch.no_grad():
|
| 245 |
-
prediction = model(torch.from_numpy(image).unsqueeze(0).float())
|
| 246 |
-
prediction = torch.sigmoid(prediction).numpy()
|
| 247 |
-
|
| 248 |
-
st.header(f"Prediction Results - {model_info['name']}")
|
| 249 |
-
|
| 250 |
-
# Create columns for input image, prediction, and overlay
|
| 251 |
-
col1, col2, col3 = st.columns(3)
|
| 252 |
-
|
| 253 |
-
# Display input image
|
| 254 |
-
with col1:
|
| 255 |
-
st.write("Input Image")
|
| 256 |
-
plt.figure(figsize=(8, 8))
|
| 257 |
-
plt.imshow(selected_channels[0], cmap='viridis')
|
| 258 |
-
plt.colorbar()
|
| 259 |
-
plt.axis('off')
|
| 260 |
-
st.pyplot(plt)
|
| 261 |
-
|
| 262 |
-
# Display prediction
|
| 263 |
-
with col2:
|
| 264 |
-
st.write("Prediction")
|
| 265 |
-
plt.figure(figsize=(8, 8))
|
| 266 |
-
plt.imshow(prediction.squeeze(), cmap='viridis')
|
| 267 |
-
plt.colorbar()
|
| 268 |
-
plt.axis('off')
|
| 269 |
-
st.pyplot(plt)
|
| 270 |
-
|
| 271 |
-
# Display overlay
|
| 272 |
-
with col3:
|
| 273 |
-
st.write("Overlay")
|
| 274 |
-
plt.figure(figsize=(8, 8))
|
| 275 |
-
plt.imshow(selected_channels[0], cmap='viridis')
|
| 276 |
-
plt.imshow(prediction.squeeze(), cmap='viridis', alpha=0.5)
|
| 277 |
-
plt.colorbar()
|
| 278 |
-
plt.axis('off')
|
| 279 |
-
st.pyplot(plt)
|
| 280 |
-
|
| 281 |
-
# Download button for prediction
|
| 282 |
-
st.write(f"Download the prediction as a .npy file for {model_info['name']}:")
|
| 283 |
-
npy_data = prediction.squeeze()
|
| 284 |
-
st.download_button(
|
| 285 |
-
label=f"Download Prediction - {model_info['name']}",
|
| 286 |
-
data=npy_data.tobytes(),
|
| 287 |
-
file_name=f"{uploaded_file.name.split('.')[0]}_{model_key}_prediction.npy",
|
| 288 |
-
mime="application/octet-stream"
|
| 289 |
-
)
|
| 290 |
-
|
| 291 |
-
except Exception as e:
|
| 292 |
-
st.error(f"Error with model {model_info['name']}: {str(e)}")
|
| 293 |
-
continue
|
| 294 |
|
| 295 |
except Exception as e:
|
| 296 |
st.error(f"Error processing file {uploaded_file.name}: {str(e)}")
|
|
|
|
|
|
|
| 297 |
continue
|
| 298 |
-
import h5py
|
| 299 |
-
import torch
|
| 300 |
-
import numpy as np
|
| 301 |
-
import matplotlib.pyplot as plt
|
| 302 |
-
import yaml
|
| 303 |
-
import os
|
| 304 |
-
|
| 305 |
-
# Import models
|
| 306 |
-
from src.mobilenetv2_model import LandslideModel as MobileNetV2Model
|
| 307 |
-
from src.vgg16_model import LandslideModel as VGG16Model
|
| 308 |
-
from src.resnet34_model import LandslideModel as ResNet34Model
|
| 309 |
-
from src.efficientnetb0_model import LandslideModel as EfficientNetB0Model
|
| 310 |
-
from src.mitb1_model import LandslideModel as MiTB1Model
|
| 311 |
-
from src.inceptionv4_model import LandslideModel as InceptionV4Model
|
| 312 |
-
from src.densenet121_model import LandslideModel as DenseNet121Model
|
| 313 |
-
from src.deeplabv3plus_model import LandslideModel as DeepLabV3PlusModel
|
| 314 |
-
from src.resnext50_32x4d_model import LandslideModel as ResNeXt50_32X4DModel
|
| 315 |
-
from src.se_resnet50_model import LandslideModel as SEResNet50Model
|
| 316 |
-
from src.se_resnext50_32x4d_model import LandslideModel as SEResNeXt50_32X4DModel
|
| 317 |
-
from segformer_model import LandslideModel as SegFormerB2Model
|
| 318 |
-
from inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
| 319 |
-
|
| 320 |
-
# Define available models
|
| 321 |
-
AVAILABLE_MODELS = {
|
| 322 |
-
"mobilenetv2": {"name": "MobileNetV2", "type": "mobilenet_v2"},
|
| 323 |
-
"vgg16": {"name": "VGG16", "type": "vgg16"},
|
| 324 |
-
"resnet34": {"name": "ResNet34", "type": "resnet34"},
|
| 325 |
-
"efficientnetb0": {"name": "EfficientNetB0", "type": "efficientnet_b0"},
|
| 326 |
-
"mitb1": {"name": "MiTB1", "type": "mitb1"},
|
| 327 |
-
"inceptionv4": {"name": "InceptionV4", "type": "inception_v4"},
|
| 328 |
-
"densenet121": {"name": "DenseNet121", "type": "densenet121"},
|
| 329 |
-
"deeplabv3plus": {"name": "DeepLabV3Plus", "type": "deeplabv3plus"},
|
| 330 |
-
"resnext50": {"name": "ResNeXt50", "type": "resnext50_32x4d"},
|
| 331 |
-
"seresnet50": {"name": "SEResNet50", "type": "se_resnet50"},
|
| 332 |
-
"seresnext50": {"name": "SEResNeXt50", "type": "se_resnext50_32x4d"},
|
| 333 |
-
"segformerb2": {"name": "SegFormerB2", "type": "segformer_b2"},
|
| 334 |
-
"inceptionresnetv2": {"name": "InceptionResNetV2", "type": "inception_resnet_v2"}
|
| 335 |
-
}
|
| 336 |
-
|
| 337 |
-
# Load the configuration file
|
| 338 |
-
config = """
|
| 339 |
-
model_config:
|
| 340 |
-
model_type: "mobilenet_v2"
|
| 341 |
-
in_channels: 14
|
| 342 |
-
num_classes: 1
|
| 343 |
-
encoder_weights: "imagenet"
|
| 344 |
-
wce_weight: 0.5
|
| 345 |
-
|
| 346 |
-
dataset_config:
|
| 347 |
-
num_classes: 1
|
| 348 |
-
num_channels: 14
|
| 349 |
-
channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
|
| 350 |
-
normalize: False
|
| 351 |
-
|
| 352 |
-
train_config:
|
| 353 |
-
dataset_path: ""
|
| 354 |
-
checkpoint_path: "checkpoints"
|
| 355 |
-
seed: 42
|
| 356 |
-
train_val_split: 0.8
|
| 357 |
-
batch_size: 16
|
| 358 |
-
num_epochs: 100
|
| 359 |
-
lr: 0.001
|
| 360 |
-
device: "cuda:0"
|
| 361 |
-
save_config: True
|
| 362 |
-
experiment_name: "mobilenet_v2"
|
| 363 |
-
|
| 364 |
-
logging_config:
|
| 365 |
-
wandb_project: "l4s"
|
| 366 |
-
wandb_entity: "Silvamillion"
|
| 367 |
-
"""
|
| 368 |
-
|
| 369 |
-
config = yaml.safe_load(config)
|
| 370 |
-
|
| 371 |
-
# Model descriptions with their respective types and descriptions
|
| 372 |
-
MODEL_DESCRIPTIONS = {
|
| 373 |
-
model_key: {
|
| 374 |
-
"type": model_info["type"],
|
| 375 |
-
"description": f"{model_info['name']} - A model for landslide detection and segmentation.",
|
| 376 |
-
"name": model_info["name"]
|
| 377 |
-
}
|
| 378 |
-
for model_key, model_info in AVAILABLE_MODELS.items()
|
| 379 |
-
}
|
| 380 |
-
|
| 381 |
-
# Streamlit app
|
| 382 |
-
st.set_page_config(page_title="Landslide Detection", layout="wide")
|
| 383 |
-
|
| 384 |
-
st.title("Landslide Detection")
|
| 385 |
-
st.markdown("""
|
| 386 |
-
## Instructions
|
| 387 |
-
1. Select a model from the sidebar or choose to run all models.
|
| 388 |
-
2. Upload one or more `.h5` files.
|
| 389 |
-
3. The app will process the files and display the input image, prediction, and overlay.
|
| 390 |
-
4. You can download the prediction results.
|
| 391 |
-
""")
|
| 392 |
-
|
| 393 |
-
# Sidebar for model selection
|
| 394 |
-
st.sidebar.title("Model Selection")
|
| 395 |
-
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 396 |
-
if model_option == "Select a single model":
|
| 397 |
-
selected_model = st.sidebar.selectbox("Select Model", list(MODEL_DESCRIPTIONS.keys()))
|
| 398 |
-
config['model_config']['model_type'] = MODEL_DESCRIPTIONS[selected_model]['type']
|
| 399 |
-
|
| 400 |
-
# Display model details in the sidebar
|
| 401 |
-
st.sidebar.markdown(f"**Model Name:** {MODEL_DESCRIPTIONS[selected_model]['name']}")
|
| 402 |
-
st.sidebar.markdown(f"**Model Type:** {MODEL_DESCRIPTIONS[selected_model]['type']}")
|
| 403 |
-
st.sidebar.markdown(f"**Description:** {MODEL_DESCRIPTIONS[selected_model]['description']}")
|
| 404 |
-
|
| 405 |
-
# Main content
|
| 406 |
-
st.header("Upload Data")
|
| 407 |
-
|
| 408 |
-
# Initialize session state for error tracking if not exists
|
| 409 |
-
if 'upload_errors' not in st.session_state:
|
| 410 |
-
st.session_state.upload_errors = []
|
| 411 |
-
|
| 412 |
-
uploaded_files = st.file_uploader(
|
| 413 |
-
"Choose .h5 files...",
|
| 414 |
-
type="h5",
|
| 415 |
-
accept_multiple_files=True,
|
| 416 |
-
help="Upload your .h5 files here. Maximum file size is 200MB."
|
| 417 |
-
)
|
| 418 |
-
|
| 419 |
-
if uploaded_files:
|
| 420 |
-
for uploaded_file in uploaded_files:
|
| 421 |
-
st.write(f"Processing file: {uploaded_file.name}")
|
| 422 |
-
|
| 423 |
-
# Display file details for debugging
|
| 424 |
-
st.write(f"File size: {uploaded_file.size} bytes")
|
| 425 |
-
|
| 426 |
-
with st.spinner('Classifying...'):
|
| 427 |
-
try:
|
| 428 |
-
# Read the file directly using BytesIO
|
| 429 |
-
import io
|
| 430 |
-
bytes_data = uploaded_file.getvalue()
|
| 431 |
-
bytes_io = io.BytesIO(bytes_data)
|
| 432 |
-
|
| 433 |
-
with h5py.File(bytes_io, 'r') as hdf:
|
| 434 |
-
# Check if 'img' exists in the file
|
| 435 |
-
if 'img' not in hdf:
|
| 436 |
-
st.error(f"Error: 'img' dataset not found in {uploaded_file.name}")
|
| 437 |
-
continue
|
| 438 |
-
|
| 439 |
-
data = np.array(hdf.get('img'))
|
| 440 |
-
data[np.isnan(data)] = 0.000001
|
| 441 |
-
channels = config["dataset_config"]["channels"]
|
| 442 |
-
image = np.zeros((128, 128, len(channels)))
|
| 443 |
-
|
| 444 |
-
except h5py.Error as he:
|
| 445 |
-
st.error(f"H5PY Error processing {uploaded_file.name}: {str(he)}")
|
| 446 |
-
continue
|
| 447 |
-
except Exception as e:
|
| 448 |
-
st.error(f"Error processing {uploaded_file.name}: {str(e)}")
|
| 449 |
-
continue
|
| 450 |
-
for i, channel in enumerate(channels):
|
| 451 |
-
image[:, :, i] = data[:, :, channel-1]
|
| 452 |
-
|
| 453 |
-
# Transform the image to the required format
|
| 454 |
-
image = image.transpose((2, 0, 1)) # (H, W, C) to (C, H, W)
|
| 455 |
-
image = torch.from_numpy(image).float().unsqueeze(0) # Add batch dimension
|
| 456 |
-
|
| 457 |
-
if model_option == "Select a single model":
|
| 458 |
-
# Process the image with the selected model
|
| 459 |
-
st.write(f"Using model: {model_type}")
|
| 460 |
-
|
| 461 |
-
# Load the model
|
| 462 |
-
model = model_class(config)
|
| 463 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 464 |
-
model.eval()
|
| 465 |
-
|
| 466 |
-
# Make prediction
|
| 467 |
-
with torch.no_grad():
|
| 468 |
-
prediction = model(image)
|
| 469 |
-
prediction = torch.sigmoid(prediction).cpu().numpy()
|
| 470 |
-
|
| 471 |
-
# Display prediction
|
| 472 |
-
st.header(f"Prediction Results - {model_type}")
|
| 473 |
-
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 474 |
-
img = image.squeeze().permute(1, 2, 0).numpy()
|
| 475 |
-
img = (img - img.min()) / (img.max() - img.min()) # Normalize the image to [0, 1] range for display
|
| 476 |
-
ax[0].imshow(img[:, :, 1:4]) # Display first three channels as RGB
|
| 477 |
-
ax[0].set_title("Input Image")
|
| 478 |
-
ax[1].imshow(prediction.squeeze() > 0.5, cmap='plasma') # Apply threshold
|
| 479 |
-
ax[1].set_title("Prediction")
|
| 480 |
-
ax[2].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 481 |
-
ax[2].imshow(prediction.squeeze() > 0.5, cmap='plasma', alpha=0.3) # Overlay prediction
|
| 482 |
-
ax[2].set_title("Overlay")
|
| 483 |
-
st.pyplot(fig)
|
| 484 |
-
|
| 485 |
-
# Option to download the prediction
|
| 486 |
-
st.write(f"Download the prediction as a .npy file for {model_type}:")
|
| 487 |
-
npy_data = prediction.squeeze()
|
| 488 |
-
st.download_button(
|
| 489 |
-
label=f"Download Prediction - {model_type}",
|
| 490 |
-
data=npy_data.tobytes(),
|
| 491 |
-
file_name=f"{uploaded_file.name.split('.')[0]}_{model_type}_prediction.npy",
|
| 492 |
-
mime="application/octet-stream"
|
| 493 |
-
)
|
| 494 |
-
|
| 495 |
-
else:
|
| 496 |
-
# Process the image with each model
|
| 497 |
-
for model_key, model_info in MODEL_DESCRIPTIONS.items():
|
| 498 |
-
st.write(f"Using model: {model_info['name']}")
|
| 499 |
-
config['model_config']['model_type'] = model_info['type']
|
| 500 |
-
|
| 501 |
-
# Get the model class from AVAILABLE_MODELS
|
| 502 |
-
model_class_name = AVAILABLE_MODELS[model_key]['name'].replace('-', '') + 'Model'
|
| 503 |
-
model_class = locals()[model_class_name]
|
| 504 |
-
|
| 505 |
-
# Initialize model downloader
|
| 506 |
-
from model_downloader import ModelDownloader
|
| 507 |
-
downloader = ModelDownloader()
|
| 508 |
-
|
| 509 |
-
try:
|
| 510 |
-
# Download/get model path
|
| 511 |
-
model_path = downloader.download_model(model_name.lower())
|
| 512 |
-
st.info(f"Using model from: {model_path}")
|
| 513 |
-
|
| 514 |
-
# Load the model
|
| 515 |
-
model = model_class(config)
|
| 516 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 517 |
-
model.eval()
|
| 518 |
-
except Exception as e:
|
| 519 |
-
st.error(f"Error loading model {model_name}: {str(e)}")
|
| 520 |
-
continue
|
| 521 |
-
|
| 522 |
-
# Make prediction
|
| 523 |
-
with torch.no_grad():
|
| 524 |
-
prediction = model(image)
|
| 525 |
-
prediction = torch.sigmoid(prediction).cpu().numpy()
|
| 526 |
-
|
| 527 |
-
# Display prediction
|
| 528 |
-
st.header(f"Prediction Results - {model_name}")
|
| 529 |
-
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 530 |
-
img = image.squeeze().permute(1, 2, 0).numpy()
|
| 531 |
-
img = (img - img.min()) / (img.max() - img.min()) # Normalize the image to [0, 1] range for display
|
| 532 |
-
ax[0].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 533 |
-
ax[0].set_title("Input Image")
|
| 534 |
-
ax[1].imshow(prediction.squeeze() > 0.5, cmap='plasma') # Apply threshold
|
| 535 |
-
ax[1].set_title("Prediction")
|
| 536 |
-
ax[2].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 537 |
-
ax[2].imshow(prediction.squeeze() > 0.5, cmap='plasma', alpha=0.3) # Overlay prediction
|
| 538 |
-
ax[2].set_title("Overlay")
|
| 539 |
-
st.pyplot(fig)
|
| 540 |
-
|
| 541 |
-
# Option to download the prediction
|
| 542 |
-
st.write(f"Download the prediction as a .npy file for {model_name}:")
|
| 543 |
-
npy_data = prediction.squeeze()
|
| 544 |
-
st.download_button(
|
| 545 |
-
label=f"Download Prediction - {model_name}",
|
| 546 |
-
data=npy_data.tobytes(),
|
| 547 |
-
file_name=f"{uploaded_file.name.split('.')[0]}_{model_name}_prediction.npy",
|
| 548 |
-
mime="application/octet-stream"
|
| 549 |
-
)
|
| 550 |
|
| 551 |
st.success('Done!')
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import sys
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# Add the parent directory to sys.path to allow imports from 'src'
|
| 6 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
| 7 |
+
|
| 8 |
import h5py
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
import yaml
|
| 13 |
import os
|
| 14 |
+
import io
|
| 15 |
|
| 16 |
# Import models
|
| 17 |
from src.mobilenetv2_model import LandslideModel as MobileNetV2Model
|
|
|
|
| 22 |
from src.inceptionv4_model import LandslideModel as InceptionV4Model
|
| 23 |
from src.densenet121_model import LandslideModel as DenseNet121Model
|
| 24 |
from src.deeplabv3plus_model import LandslideModel as DeepLabV3PlusModel
|
| 25 |
+
from src.resnext50_32x4d_model import LandslideModel as ResNeXt50Model
|
| 26 |
from src.se_resnet50_model import LandslideModel as SEResNet50Model
|
| 27 |
+
from src.se_resnext50_32x4d_model import LandslideModel as SEResNeXt50Model
|
| 28 |
from src.segformer_model import LandslideModel as SegFormerB2Model
|
| 29 |
from src.inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
| 30 |
+
from src.model_downloader import ModelDownloader
|
| 31 |
|
| 32 |
# Define available models
|
| 33 |
AVAILABLE_MODELS = {
|
|
|
|
| 39 |
"inceptionv4": {"name": "InceptionV4", "type": "inception_v4"},
|
| 40 |
"densenet121": {"name": "DenseNet121", "type": "densenet121"},
|
| 41 |
"deeplabv3plus": {"name": "DeepLabV3Plus", "type": "deeplabv3plus"},
|
| 42 |
+
"resnext50": {"name": "ResNeXt50", "type": "resnext50_32x4d", "downloader_key": "resnext50_32x4d"},
|
| 43 |
+
"seresnet50": {"name": "SEResNet50", "type": "se_resnet50", "downloader_key": "se_resnet50"},
|
| 44 |
+
"seresnext50": {"name": "SEResNeXt50", "type": "se_resnext50_32x4d", "downloader_key": "se_resnext50_32x4d"},
|
| 45 |
+
"segformerb2": {"name": "SegFormerB2", "type": "segformer_b2", "downloader_key": "segformer"},
|
| 46 |
"inceptionresnetv2": {"name": "InceptionResNetV2", "type": "inception_resnet_v2"}
|
| 47 |
}
|
| 48 |
|
|
|
|
| 51 |
model_key: {
|
| 52 |
"type": model_info["type"],
|
| 53 |
"description": f"{model_info['name']} - A model for landslide detection and segmentation.",
|
| 54 |
+
"name": model_info["name"],
|
| 55 |
+
"downloader_key": model_info.get("downloader_key", model_key)
|
| 56 |
}
|
| 57 |
for model_key, model_info in AVAILABLE_MODELS.items()
|
| 58 |
}
|
| 59 |
|
| 60 |
# Load the configuration file
|
| 61 |
+
config_str = """
|
| 62 |
model_config:
|
| 63 |
model_type: "mobilenet_v2"
|
| 64 |
in_channels: 14
|
|
|
|
| 83 |
device: "cuda:0"
|
| 84 |
save_config: True
|
| 85 |
experiment_name: "mobilenet_v2"
|
| 86 |
+
|
| 87 |
+
logging_config:
|
| 88 |
+
wandb_project: "l4s"
|
| 89 |
+
wandb_entity: "Silvamillion"
|
| 90 |
"""
|
| 91 |
|
| 92 |
+
config = yaml.safe_load(config_str)
|
| 93 |
+
|
| 94 |
+
def process_and_visualize(model_key, model_info, image_tensor, original_image, uploaded_file_name):
|
| 95 |
+
"""
|
| 96 |
+
Process the image with the selected model and visualize results.
|
| 97 |
+
"""
|
| 98 |
+
try:
|
| 99 |
+
st.write(f"Using model: {model_info['name']}")
|
| 100 |
+
|
| 101 |
+
# Update config for the specific model
|
| 102 |
+
current_config = config.copy()
|
| 103 |
+
current_config['model_config']['model_type'] = model_info['type']
|
| 104 |
+
|
| 105 |
+
# Get the model class
|
| 106 |
+
model_class_name = AVAILABLE_MODELS[model_key]['name'].replace('-', '') + 'Model'
|
| 107 |
+
if model_class_name not in globals():
|
| 108 |
+
# Fallback for naming inconsistencies if any
|
| 109 |
+
# Try to find it in globals
|
| 110 |
+
pass
|
| 111 |
+
model_class = globals()[model_class_name]
|
| 112 |
+
|
| 113 |
+
# Initialize model downloader
|
| 114 |
+
downloader = ModelDownloader()
|
| 115 |
+
|
| 116 |
+
# Download/get model path
|
| 117 |
+
download_key = model_info.get('downloader_key', model_key)
|
| 118 |
+
model_path = downloader.download_model(download_key)
|
| 119 |
+
st.info(f"Using model from: {model_path}")
|
| 120 |
+
|
| 121 |
+
# Load the model
|
| 122 |
+
model = model_class(current_config)
|
| 123 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 124 |
+
model.eval()
|
| 125 |
+
|
| 126 |
+
# Make prediction
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
prediction = model(image_tensor)
|
| 129 |
+
prediction = torch.sigmoid(prediction).cpu().numpy()
|
| 130 |
+
|
| 131 |
+
# Display prediction
|
| 132 |
+
st.header(f"Prediction Results - {model_info['name']}")
|
| 133 |
+
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 134 |
+
|
| 135 |
+
# Normalize image for display
|
| 136 |
+
img_display = original_image.transpose(1, 2, 0) # (C, H, W) -> (H, W, C)
|
| 137 |
+
img_display = (img_display - img_display.min()) / (img_display.max() - img_display.min())
|
| 138 |
+
|
| 139 |
+
ax[0].imshow(img_display[:, :, :3]) # Display first three channels as RGB
|
| 140 |
+
ax[0].set_title("Input Image")
|
| 141 |
+
ax[0].axis('off')
|
| 142 |
+
|
| 143 |
+
ax[1].imshow(prediction.squeeze(), cmap='plasma') # Raw prediction map
|
| 144 |
+
ax[1].set_title("Prediction Probability")
|
| 145 |
+
ax[1].axis('off')
|
| 146 |
+
|
| 147 |
+
ax[2].imshow(img_display[:, :, :3])
|
| 148 |
+
ax[2].imshow(prediction.squeeze() > 0.5, cmap='plasma', alpha=0.4) # Overlay
|
| 149 |
+
ax[2].set_title("Overlay (Threshold > 0.5)")
|
| 150 |
+
ax[2].axis('off')
|
| 151 |
+
|
| 152 |
+
st.pyplot(fig)
|
| 153 |
+
plt.close(fig)
|
| 154 |
+
|
| 155 |
+
# Download button
|
| 156 |
+
st.write(f"Download the prediction as a .npy file for {model_info['name']}:")
|
| 157 |
+
npy_data = prediction.squeeze()
|
| 158 |
+
st.download_button(
|
| 159 |
+
label=f"Download Prediction - {model_info['name']}",
|
| 160 |
+
data=npy_data.tobytes(),
|
| 161 |
+
file_name=f"{uploaded_file_name.split('.')[0]}_{model_key}_prediction.npy",
|
| 162 |
+
mime="application/octet-stream"
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
st.error(f"Error with model {model_info['name']}: {str(e)}")
|
| 167 |
+
import traceback
|
| 168 |
+
st.error(traceback.format_exc())
|
| 169 |
|
| 170 |
# Streamlit app
|
| 171 |
st.set_page_config(page_title="Landslide Detection", layout="wide")
|
|
|
|
| 183 |
st.sidebar.title("Model Selection")
|
| 184 |
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 185 |
|
| 186 |
+
selected_model_key = None
|
| 187 |
if model_option == "Select a single model":
|
| 188 |
selected_model_key = st.sidebar.selectbox("Select Model", list(MODEL_DESCRIPTIONS.keys()))
|
| 189 |
selected_model_info = MODEL_DESCRIPTIONS[selected_model_key]
|
|
|
|
| 190 |
|
| 191 |
# Display model details in the sidebar
|
| 192 |
st.sidebar.markdown("### Model Details")
|
|
|
|
| 216 |
with st.spinner('Classifying...'):
|
| 217 |
try:
|
| 218 |
# Read the file directly using BytesIO
|
|
|
|
| 219 |
bytes_data = uploaded_file.getvalue()
|
| 220 |
bytes_io = io.BytesIO(bytes_data)
|
| 221 |
|
|
|
|
| 227 |
data = np.array(hdf.get('img'))
|
| 228 |
data[np.isnan(data)] = 0.000001
|
| 229 |
channels = config["dataset_config"]["channels"]
|
| 230 |
+
|
| 231 |
+
# Prepare image
|
| 232 |
+
# Assuming data shape is (14, 128, 128) based on typical satellite data or (128, 128, 14)
|
| 233 |
+
# The original code did: image[:, :, i] = data[band-1] implying data is (14, 128, 128) if accessed by index
|
| 234 |
+
# But later it did data[:, :, channel-1] in the else block?
|
| 235 |
+
# Let's check the original code logic again.
|
| 236 |
+
# Original code had two different logic blocks for data loading!
|
| 237 |
+
# Block 1 (single model): image[:, :, i] = data[band-1] -> implies data is (C, H, W)
|
| 238 |
+
# Block 2 (all models): image[:, :, i] = data[:, :, channel-1] -> implies data is (H, W, C)
|
| 239 |
+
|
| 240 |
+
# I will assume (C, H, W) is more standard for HDF5 'img' usually, but let's try to be robust or pick one.
|
| 241 |
+
# Given the inconsistency, I'll check data shape.
|
| 242 |
+
|
| 243 |
image = np.zeros((128, 128, len(channels)))
|
| 244 |
+
|
| 245 |
+
if data.ndim == 3:
|
| 246 |
+
if data.shape[0] == 14: # (C, H, W)
|
| 247 |
+
for i, band in enumerate(channels):
|
| 248 |
+
image[:, :, i] = data[band-1, :, :]
|
| 249 |
+
elif data.shape[2] == 14: # (H, W, C)
|
| 250 |
+
for i, band in enumerate(channels):
|
| 251 |
+
image[:, :, i] = data[:, :, band-1]
|
| 252 |
+
else:
|
| 253 |
+
st.warning(f"Unexpected data shape: {data.shape}. Assuming (C, H, W).")
|
| 254 |
+
for i, band in enumerate(channels):
|
| 255 |
+
if band-1 < data.shape[0]:
|
| 256 |
+
image[:, :, i] = data[band-1, :, :]
|
| 257 |
+
else:
|
| 258 |
+
st.error(f"Data has {data.ndim} dimensions, expected 3.")
|
| 259 |
+
continue
|
| 260 |
|
| 261 |
+
# Prepare for model (Batch, Channel, Height, Width)
|
| 262 |
+
# image is currently (H, W, C)
|
| 263 |
+
image_display = image.transpose(2, 0, 1) # (C, H, W)
|
| 264 |
+
image_tensor = torch.from_numpy(image_display).unsqueeze(0).float() # (1, C, H, W)
|
|
|
|
| 265 |
|
| 266 |
if model_option == "Select a single model":
|
| 267 |
+
process_and_visualize(selected_model_key, selected_model_info, image_tensor, image_display, uploaded_file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
else:
|
|
|
|
| 269 |
for model_key, model_info in MODEL_DESCRIPTIONS.items():
|
| 270 |
+
process_and_visualize(model_key, model_info, image_tensor, image_display, uploaded_file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
except Exception as e:
|
| 273 |
st.error(f"Error processing file {uploaded_file.name}: {str(e)}")
|
| 274 |
+
import traceback
|
| 275 |
+
st.error(traceback.format_exc())
|
| 276 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
st.success('Done!')
|