Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
import torch
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
def predict_image(image):
|
| 10 |
+
classifier=pipeline(task='image-classification' ,model='google/vit-base-patch16-224')
|
| 11 |
+
prediction=classifier(image)
|
| 12 |
+
result=prediction[0]['label']
|
| 13 |
+
return result
|
| 14 |
+
|
| 15 |
+
def translate_to_arabic(text):
|
| 16 |
+
translator=pipeline(task='translation_en_to_ar' ,model='Helsinki-NLP/opus-mt-en-ar')
|
| 17 |
+
result=translator(text,max_length=100)
|
| 18 |
+
return result[0]['translation_text']
|
| 19 |
+
|
| 20 |
+
def text_to_speech(text):
|
| 21 |
+
model=pipeline(task='text-to-speech', model='MBZUAI/speecht5_tts_clartts_ar')
|
| 22 |
+
embedding_dataset=load_dataset('herwoww/arabic_xvector_embeddings',split='validation')
|
| 23 |
+
speaker_embedding=torch.tensor(embedding_dataset[100]['speaker_embeddings']).unsqueeze(0) ##It becomes a 2-D tensor:
|
| 24 |
+
speech=model(text,forward_params={'speaker_embeddings':speaker_embedding})
|
| 25 |
+
|
| 26 |
+
return (speech['sampling_rate'],np.array(speech['audio'],dtype=np.float32))
|
| 27 |
+
|
| 28 |
+
with gr.Blocks() as demo:
|
| 29 |
+
gr.Markdown("## Image classification, Arabic Translation and text to speech interface")
|
| 30 |
+
|
| 31 |
+
with gr.Row():
|
| 32 |
+
with gr.Column():
|
| 33 |
+
image_input=gr.Image(type="pil",label='upload_image')
|
| 34 |
+
predict_button=gr.Button('predict')
|
| 35 |
+
Prediction_Result=gr.Textbox(label='Prediction Result')
|
| 36 |
+
|
| 37 |
+
predict_button.click(
|
| 38 |
+
fn=predict_image,
|
| 39 |
+
inputs=image_input,
|
| 40 |
+
outputs=Prediction_Result
|
| 41 |
+
)
|
| 42 |
+
with gr.Row():
|
| 43 |
+
with gr.Column():
|
| 44 |
+
translated_text=gr.Textbox(label='Translated Text')
|
| 45 |
+
translated_button=gr.Button('Translate To Arabic')
|
| 46 |
+
|
| 47 |
+
translated_button.click(
|
| 48 |
+
fn=translate_to_arabic,
|
| 49 |
+
inputs=Prediction_Result,
|
| 50 |
+
outputs=translated_text
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
with gr.Row():
|
| 54 |
+
to_speech_button=gr.Button('convert To Audio')
|
| 55 |
+
audio_output=gr.Audio(label='Audio Output')
|
| 56 |
+
|
| 57 |
+
to_speech_button.click(
|
| 58 |
+
fn=text_to_speech,
|
| 59 |
+
inputs=translated_text,
|
| 60 |
+
outputs=audio_output
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
demo.launch(share=True)
|