python -m venv .env # Load model directly from transformers import AutoTokenizer, AutoModelForTokenClassification import torch tokenizer = AutoTokenizer.from_pretrained("yonigo/distilbert-base-cased-pii-en") model = AutoModelForTokenClassification.from_pretrained("yonigo/distilbert-base-cased-pii-en") model.eval() text = "Hello" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # Get predicted logits logits = outputs.logits # Get prediction predicted_class = torch.argmax(logits, dim=-1).item() print(f"Predicted class: {predicted_class}")