Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
from itertools import chain
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
+
from flask import Flask, request, jsonify, Response, stream_with_context, render_template # Import render_template
|
| 8 |
+
from werkzeug.middleware.proxy_fix import ProxyFix
|
| 9 |
+
from requests.adapters import HTTPAdapter
|
| 10 |
+
from requests.packages.urllib3.util.retry import Retry
|
| 11 |
+
os.environ['TZ'] = 'Asia/Shanghai'
|
| 12 |
+
time.tzset()
|
| 13 |
+
logging.basicConfig(level=logging.INFO,
|
| 14 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
| 15 |
+
API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info"
|
| 16 |
+
TEST_MODEL_ENDPOINT = "https://api-st.siliconflow.cn/v1/chat/completions"
|
| 17 |
+
MODELS_ENDPOINT = "https://api-st.siliconflow.cn/v1/models"
|
| 18 |
+
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings"
|
| 19 |
+
IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations"
|
| 20 |
+
def requests_session_with_retries(
|
| 21 |
+
retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504)
|
| 22 |
+
):
|
| 23 |
+
session = requests.Session()
|
| 24 |
+
retry = Retry(
|
| 25 |
+
total=retries,
|
| 26 |
+
read=retries,
|
| 27 |
+
connect=retries,
|
| 28 |
+
backoff_factor=backoff_factor,
|
| 29 |
+
status_forcelist=status_forcelist,
|
| 30 |
+
)
|
| 31 |
+
adapter = HTTPAdapter(
|
| 32 |
+
max_retries=retry,
|
| 33 |
+
pool_connections=1000,
|
| 34 |
+
pool_maxsize=10000,
|
| 35 |
+
pool_block=False
|
| 36 |
+
)
|
| 37 |
+
session.mount("http://", adapter)
|
| 38 |
+
session.mount("https://", adapter)
|
| 39 |
+
return session
|
| 40 |
+
session = requests_session_with_retries()
|
| 41 |
+
app = Flask(__name__)
|
| 42 |
+
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1)
|
| 43 |
+
models = {
|
| 44 |
+
"text": [],
|
| 45 |
+
"free_text": [],
|
| 46 |
+
"embedding": [],
|
| 47 |
+
"free_embedding": [],
|
| 48 |
+
"image": [],
|
| 49 |
+
"free_image": []
|
| 50 |
+
}
|
| 51 |
+
key_status = {
|
| 52 |
+
"invalid": [],
|
| 53 |
+
"free": [],
|
| 54 |
+
"unverified": [],
|
| 55 |
+
"valid": []
|
| 56 |
+
}
|
| 57 |
+
executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
|
| 58 |
+
model_key_indices = {}
|
| 59 |
+
request_timestamps = []
|
| 60 |
+
token_counts = []
|
| 61 |
+
request_timestamps_day = []
|
| 62 |
+
token_counts_day = []
|
| 63 |
+
data_lock = threading.Lock()
|
| 64 |
+
def get_credit_summary(api_key):
|
| 65 |
+
headers = {
|
| 66 |
+
"Authorization": f"Bearer {api_key}",
|
| 67 |
+
"Content-Type": "application/json"
|
| 68 |
+
}
|
| 69 |
+
max_retries = 3
|
| 70 |
+
for attempt in range(max_retries):
|
| 71 |
+
try:
|
| 72 |
+
response = session.get(API_ENDPOINT, headers=headers, timeout=2)
|
| 73 |
+
response.raise_for_status()
|
| 74 |
+
data = response.json().get("data", {})
|
| 75 |
+
total_balance = data.get("totalBalance", 0)
|
| 76 |
+
logging.info(f"获取额度,API Key:{api_key},当前额度: {total_balance}")
|
| 77 |
+
return {"total_balance": float(total_balance)}
|
| 78 |
+
except requests.exceptions.Timeout as e:
|
| 79 |
+
logging.error(f"获取额度信息失败,API Key:{api_key},尝试次数:{attempt+1}/{max_retries},错误信息:{e} (Timeout)")
|
| 80 |
+
if attempt >= max_retries - 1:
|
| 81 |
+
logging.error(f"获取额度信息失败,API Key:{api_key},所有重试次数均已失败 (Timeout)")
|
| 82 |
+
except requests.exceptions.RequestException as e:
|
| 83 |
+
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
|
| 84 |
+
return None
|
| 85 |
+
FREE_MODEL_TEST_KEY = (
|
| 86 |
+
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw"
|
| 87 |
+
)
|
| 88 |
+
FREE_IMAGE_LIST = [
|
| 89 |
+
"stabilityai/stable-diffusion-3-5-large",
|
| 90 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 91 |
+
"stabilityai/stable-diffusion-3-medium",
|
| 92 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 93 |
+
"stabilityai/stable-diffusion-2-1"
|
| 94 |
+
]
|
| 95 |
+
def test_model_availability(api_key, model_name, model_type="chat"):
|
| 96 |
+
headers = {
|
| 97 |
+
"Authorization": f"Bearer {api_key}",
|
| 98 |
+
"Content-Type": "application/json"
|
| 99 |
+
}
|
| 100 |
+
if model_type == "image":
|
| 101 |
+
return model_name in FREE_IMAGE_LIST
|
| 102 |
+
try:
|
| 103 |
+
endpoint = EMBEDDINGS_ENDPOINT if model_type == "embedding" else TEST_MODEL_ENDPOINT
|
| 104 |
+
payload = (
|
| 105 |
+
{"model": model_name, "input": ["hi"]}
|
| 106 |
+
if model_type == "embedding"
|
| 107 |
+
else {"model": model_name, "messages": [{"role": "user", "content": "hi"}], "max_tokens": 5, "stream": False}
|
| 108 |
+
)
|
| 109 |
+
timeout = 10 if model_type == "embedding" else 5
|
| 110 |
+
response = session.post(
|
| 111 |
+
endpoint,
|
| 112 |
+
headers=headers,
|
| 113 |
+
json=payload,
|
| 114 |
+
timeout=timeout
|
| 115 |
+
)
|
| 116 |
+
return response.status_code in [200, 429]
|
| 117 |
+
except requests.exceptions.RequestException as e:
|
| 118 |
+
logging.error(
|
| 119 |
+
f"测试{model_type}模型 {model_name} 可用性失败,"
|
| 120 |
+
f"API Key:{api_key},错误信息:{e}"
|
| 121 |
+
)
|
| 122 |
+
return False
|
| 123 |
+
def process_image_url(image_url, response_format=None):
|
| 124 |
+
if not image_url:
|
| 125 |
+
return {"url": ""}
|
| 126 |
+
if response_format == "b64_json":
|
| 127 |
+
try:
|
| 128 |
+
response = session.get(image_url, stream=True)
|
| 129 |
+
response.raise_for_status()
|
| 130 |
+
image = Image.open(response.raw)
|
| 131 |
+
buffered = io.BytesIO()
|
| 132 |
+
image.save(buffered, format="PNG")
|
| 133 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 134 |
+
return {"b64_json": img_str}
|
| 135 |
+
except Exception as e:
|
| 136 |
+
logging.error(f"图片转base64失败: {e}")
|
| 137 |
+
return {"url": image_url}
|
| 138 |
+
return {"url": image_url}
|
| 139 |
+
def create_base64_markdown_image(image_url):
|
| 140 |
+
try:
|
| 141 |
+
response = session.get(image_url, stream=True)
|
| 142 |
+
response.raise_for_status()
|
| 143 |
+
image = Image.open(BytesIO(response.content))
|
| 144 |
+
new_size = tuple(dim // 4 for dim in image.size)
|
| 145 |
+
resized_image = image.resize(new_size, Image.LANCZOS)
|
| 146 |
+
buffered = BytesIO()
|
| 147 |
+
resized_image.save(buffered, format="PNG")
|
| 148 |
+
base64_encoded = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 149 |
+
markdown_image_link = f""
|
| 150 |
+
logging.info("Created base64 markdown image link.")
|
| 151 |
+
return markdown_image_link
|
| 152 |
+
except Exception as e:
|
| 153 |
+
logging.error(f"Error creating markdown image: {e}")
|
| 154 |
+
return None
|
| 155 |
+
def extract_user_content(messages):
|
| 156 |
+
user_content = ""
|
| 157 |
+
for message in messages:
|
| 158 |
+
if message["role"] == "user":
|
| 159 |
+
if isinstance(message["content"], str):
|
| 160 |
+
user_content += message["content"] + " "
|
| 161 |
+
elif isinstance(message["content"], list):
|
| 162 |
+
for item in message["content"]:
|
| 163 |
+
if isinstance(item, dict) and item.get("type") == "text":
|
| 164 |
+
user_content += item.get("text", "") + " "
|
| 165 |
+
return user_content.strip()
|
| 166 |
+
def get_siliconflow_data(model_name, data):
|
| 167 |
+
siliconflow_data = {
|
| 168 |
+
"model": model_name,
|
| 169 |
+
"prompt": data.get("prompt") or "",
|
| 170 |
+
}
|
| 171 |
+
if model_name == "black-forest-labs/FLUX.1-pro":
|
| 172 |
+
siliconflow_data.update({
|
| 173 |
+
"width": max(256, min(1440, (data.get("width", 1024) // 32) * 32)),
|
| 174 |
+
"height": max(256, min(1440, (data.get("height", 768) // 32) * 32)),
|
| 175 |
+
"prompt_upsampling": data.get("prompt_upsampling", False),
|
| 176 |
+
"image_prompt": data.get("image_prompt"),
|
| 177 |
+
"steps": max(1, min(50, data.get("steps", 20))),
|
| 178 |
+
"guidance": max(1.5, min(5, data.get("guidance", 3))),
|
| 179 |
+
"safety_tolerance": max(0, min(6, data.get("safety_tolerance", 2))),
|
| 180 |
+
"interval": max(1, min(4, data.get("interval", 2))),
|
| 181 |
+
"output_format": data.get("output_format", "png")
|
| 182 |
+
})
|
| 183 |
+
seed = data.get("seed")
|
| 184 |
+
if isinstance(seed, int) and 0 < seed < 9999999999:
|
| 185 |
+
siliconflow_data["seed"] = seed
|
| 186 |
+
else:
|
| 187 |
+
siliconflow_data.update({
|
| 188 |
+
"image_size": data.get("image_size", "1024x1024"),
|
| 189 |
+
"prompt_enhancement": data.get("prompt_enhancement", False)
|
| 190 |
+
})
|
| 191 |
+
seed = data.get("seed")
|
| 192 |
+
if isinstance(seed, int) and 0 < seed < 9999999999:
|
| 193 |
+
siliconflow_data["seed"] = seed
|
| 194 |
+
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
|
| 195 |
+
siliconflow_data.update({
|
| 196 |
+
"batch_size": max(1, min(4, data.get("n", 1))),
|
| 197 |
+
"num_inference_steps": max(1, min(50, data.get("steps", 20))),
|
| 198 |
+
"guidance_scale": max(0, min(100, data.get("guidance_scale", 7.5))),
|
| 199 |
+
"negative_prompt": data.get("negative_prompt")
|
| 200 |
+
})
|
| 201 |
+
valid_sizes = ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]
|
| 202 |
+
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in valid_sizes:
|
| 203 |
+
siliconflow_data["image_size"] = "1024x1024"
|
| 204 |
+
return siliconflow_data
|
| 205 |
+
def refresh_models():
|
| 206 |
+
global models
|
| 207 |
+
models["text"] = get_all_models(FREE_MODEL_TEST_KEY, "chat")
|
| 208 |
+
models["embedding"] = get_all_models(FREE_MODEL_TEST_KEY, "embedding")
|
| 209 |
+
models["image"] = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image")
|
| 210 |
+
models["free_text"] = []
|
| 211 |
+
models["free_embedding"] = []
|
| 212 |
+
models["free_image"] = []
|
| 213 |
+
ban_models = []
|
| 214 |
+
ban_models_str = os.environ.get("BAN_MODELS")
|
| 215 |
+
if ban_models_str:
|
| 216 |
+
try:
|
| 217 |
+
ban_models = json.loads(ban_models_str)
|
| 218 |
+
if not isinstance(ban_models, list):
|
| 219 |
+
logging.warning("环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。")
|
| 220 |
+
ban_models = []
|
| 221 |
+
except json.JSONDecodeError:
|
| 222 |
+
logging.warning("环境变量 BAN_MODELS JSON 解析失败,请检查格式。")
|
| 223 |
+
models["text"] = [model for model in models["text"] if model not in ban_models]
|
| 224 |
+
models["embedding"] = [model for model in models["embedding"] if model not in ban_models]
|
| 225 |
+
models["image"] = [model for model in models["image"] if model not in ban_models]
|
| 226 |
+
model_types = [
|
| 227 |
+
("text", "chat"),
|
| 228 |
+
("embedding", "embedding"),
|
| 229 |
+
("image", "image")
|
| 230 |
+
]
|
| 231 |
+
for model_type, test_type in model_types:
|
| 232 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
|
| 233 |
+
future_to_model = {
|
| 234 |
+
executor.submit(
|
| 235 |
+
test_model_availability,
|
| 236 |
+
FREE_MODEL_TEST_KEY,
|
| 237 |
+
model,
|
| 238 |
+
test_type
|
| 239 |
+
): model for model in models[model_type]
|
| 240 |
+
}
|
| 241 |
+
for future in concurrent.futures.as_completed(future_to_model):
|
| 242 |
+
model = future_to_model[future]
|
| 243 |
+
try:
|
| 244 |
+
is_free = future.result()
|
| 245 |
+
if is_free:
|
| 246 |
+
models[f"free_{model_type}"].append(model)
|
| 247 |
+
except Exception as exc:
|
| 248 |
+
logging.error(f"{model_type}模型 {model} 测试生成异常: {exc}")
|
| 249 |
+
for model_type in ["text", "embedding", "image"]:
|
| 250 |
+
logging.info(f"所有{model_type}模型列表:{models[model_type]}")
|
| 251 |
+
logging.info(f"免费{model_type}模型列表:{models[f'free_{model_type}']}")
|
| 252 |
+
def load_keys():
|
| 253 |
+
global key_status
|
| 254 |
+
for status in key_status:
|
| 255 |
+
key_status[status] = []
|
| 256 |
+
keys_str = os.environ.get("KEYS")
|
| 257 |
+
if not keys_str:
|
| 258 |
+
logging.warning("环境变量 KEYS 未设置。")
|
| 259 |
+
return
|
| 260 |
+
test_model = os.environ.get("TEST_MODEL", "Pro/google/gemma-2-9b-it")
|
| 261 |
+
unique_keys = list(set(key.strip() for key in keys_str.split(',')))
|
| 262 |
+
os.environ["KEYS"] = ','.join(unique_keys)
|
| 263 |
+
logging.info(f"加载的 keys:{unique_keys}")
|
| 264 |
+
def process_key_with_logging(key):
|
| 265 |
+
try:
|
| 266 |
+
key_type = process_key(key, test_model)
|
| 267 |
+
if key_type in key_status:
|
| 268 |
+
key_status[key_type].append(key)
|
| 269 |
+
return key_type
|
| 270 |
+
except Exception as exc:
|
| 271 |
+
logging.error(f"处理 KEY {key} 生成异常: {exc}")
|
| 272 |
+
return "invalid"
|
| 273 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
|
| 274 |
+
futures = [executor.submit(process_key_with_logging, key) for key in unique_keys]
|
| 275 |
+
concurrent.futures.wait(futures)
|
| 276 |
+
for status, keys in key_status.items():
|
| 277 |
+
logging.info(f"{status.capitalize()} KEYS: {keys}")
|
| 278 |
+
global invalid_keys_global, free_keys_global, unverified_keys_global, valid_keys_global
|
| 279 |
+
invalid_keys_global = key_status["invalid"]
|
| 280 |
+
free_keys_global = key_status["free"]
|
| 281 |
+
unverified_keys_global = key_status["unverified"]
|
| 282 |
+
valid_keys_global = key_status["valid"]
|
| 283 |
+
def process_key(key, test_model):
|
| 284 |
+
credit_summary = get_credit_summary(key)
|
| 285 |
+
if credit_summary is None:
|
| 286 |
+
return "invalid"
|
| 287 |
+
else:
|
| 288 |
+
total_balance = credit_summary.get("total_balance", 0)
|
| 289 |
+
if total_balance <= 0.03:
|
| 290 |
+
return "free"
|
| 291 |
+
else:
|
| 292 |
+
if test_model_availability(key, test_model):
|
| 293 |
+
return "valid"
|
| 294 |
+
else:
|
| 295 |
+
return "unverified"
|
| 296 |
+
def get_all_models(api_key, sub_type):
|
| 297 |
+
headers = {
|
| 298 |
+
"Authorization": f"Bearer {api_key}",
|
| 299 |
+
"Content-Type": "application/json"
|
| 300 |
+
}
|
| 301 |
+
try:
|
| 302 |
+
response = session.get(
|
| 303 |
+
MODELS_ENDPOINT,
|
| 304 |
+
headers=headers,
|
| 305 |
+
params={"sub_type": sub_type}
|
| 306 |
+
)
|
| 307 |
+
response.raise_for_status()
|
| 308 |
+
data = response.json()
|
| 309 |
+
if (
|
| 310 |
+
isinstance(data, dict) and
|
| 311 |
+
'data' in data and
|
| 312 |
+
isinstance(data['data'], list)
|
| 313 |
+
):
|
| 314 |
+
return [
|
| 315 |
+
model.get("id") for model in data["data"]
|
| 316 |
+
if isinstance(model, dict) and "id" in model
|
| 317 |
+
]
|
| 318 |
+
else:
|
| 319 |
+
logging.error("获取模型列表失败:响应数据格式不正确")
|
| 320 |
+
return []
|
| 321 |
+
except requests.exceptions.RequestException as e:
|
| 322 |
+
logging.error(
|
| 323 |
+
f"获取模型列表失败,"
|
| 324 |
+
f"API Key:{api_key},错误信息:{e}"
|
| 325 |
+
)
|
| 326 |
+
return []
|
| 327 |
+
except (KeyError, TypeError) as e:
|
| 328 |
+
logging.error(
|
| 329 |
+
f"解析模型列表失败,"
|
| 330 |
+
f"API Key:{api_key},错误信息:{e}"
|
| 331 |
+
)
|
| 332 |
+
return []
|
| 333 |
+
def determine_request_type(model_name, model_list, free_model_list):
|
| 334 |
+
if model_name in free_model_list:
|
| 335 |
+
return "free"
|
| 336 |
+
elif model_name in model_list:
|
| 337 |
+
return "paid"
|
| 338 |
+
else:
|
| 339 |
+
return "unknown"
|
| 340 |
+
def select_key(request_type, model_name):
|
| 341 |
+
if request_type == "free":
|
| 342 |
+
available_keys = (
|
| 343 |
+
free_keys_global +
|
| 344 |
+
unverified_keys_global +
|
| 345 |
+
valid_keys_global
|
| 346 |
+
)
|
| 347 |
+
elif request_type == "paid":
|
| 348 |
+
available_keys = unverified_keys_global + valid_keys_global
|
| 349 |
+
else:
|
| 350 |
+
available_keys = (
|
| 351 |
+
free_keys_global +
|
| 352 |
+
unverified_keys_global +
|
| 353 |
+
valid_keys_global
|
| 354 |
+
)
|
| 355 |
+
if not available_keys:
|
| 356 |
+
return None
|
| 357 |
+
current_index = model_key_indices.get(model_name, 0)
|
| 358 |
+
for _ in range(len(available_keys)): # Corrected line: _in changed to _
|
| 359 |
+
key = available_keys[current_index % len(available_keys)]
|
| 360 |
+
current_index += 1
|
| 361 |
+
if key_is_valid(key, request_type):
|
| 362 |
+
model_key_indices[model_name] = current_index
|
| 363 |
+
return key
|
| 364 |
+
else:
|
| 365 |
+
logging.warning(
|
| 366 |
+
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
|
| 367 |
+
)
|
| 368 |
+
model_key_indices[model_name] = 0
|
| 369 |
+
return None
|
| 370 |
+
def key_is_valid(key, request_type):
|
| 371 |
+
if request_type == "invalid":
|
| 372 |
+
return False
|
| 373 |
+
credit_summary = get_credit_summary(key)
|
| 374 |
+
if credit_summary is None:
|
| 375 |
+
return False
|
| 376 |
+
total_balance = credit_summary.get("total_balance", 0)
|
| 377 |
+
if request_type == "free":
|
| 378 |
+
return True
|
| 379 |
+
elif request_type == "paid" or request_type == "unverified": #Fixed typo here
|
| 380 |
+
return total_balance > 0
|
| 381 |
+
else:
|
| 382 |
+
return False
|
| 383 |
+
def check_authorization(request):
|
| 384 |
+
authorization_key = os.environ.get("AUTHORIZATION_KEY")
|
| 385 |
+
if not authorization_key:
|
| 386 |
+
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。")
|
| 387 |
+
return True
|
| 388 |
+
auth_header = request.headers.get('Authorization')
|
| 389 |
+
if not auth_header:
|
| 390 |
+
logging.warning("请求头中缺少 Authorization 字段。")
|
| 391 |
+
return False
|
| 392 |
+
if auth_header != f"Bearer {authorization_key}":
|
| 393 |
+
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
|
| 394 |
+
return False
|
| 395 |
+
return True
|
| 396 |
+
|
| 397 |
+
def obfuscate_key(key):
|
| 398 |
+
if not key:
|
| 399 |
+
return "****"
|
| 400 |
+
prefix_length = 6
|
| 401 |
+
suffix_length = 4
|
| 402 |
+
if len(key) <= prefix_length + suffix_length:
|
| 403 |
+
return "****" # If key is too short, just mask it all
|
| 404 |
+
prefix = key[:prefix_length]
|
| 405 |
+
suffix = key[-suffix_length:]
|
| 406 |
+
masked_part = "*" * (len(key) - prefix_length - suffix_length)
|
| 407 |
+
return prefix + masked_part + suffix
|
| 408 |
+
|
| 409 |
+
scheduler = BackgroundScheduler()
|
| 410 |
+
scheduler.add_job(load_keys, 'interval', hours=1)
|
| 411 |
+
scheduler.remove_all_jobs()
|
| 412 |
+
scheduler.add_job(refresh_models, 'interval', hours=1)
|
| 413 |
+
|
| 414 |
+
@app.route('/')
|
| 415 |
+
def index():
|
| 416 |
+
current_time = time.time()
|
| 417 |
+
one_minute_ago = current_time - 60
|
| 418 |
+
one_day_ago = current_time - 86400
|
| 419 |
+
with data_lock:
|
| 420 |
+
while request_timestamps and request_timestamps[0] < one_minute_ago:
|
| 421 |
+
request_timestamps.pop(0)
|
| 422 |
+
token_counts.pop(0)
|
| 423 |
+
rpm = len(request_timestamps)
|
| 424 |
+
tpm = sum(token_counts)
|
| 425 |
+
with data_lock:
|
| 426 |
+
while request_timestamps_day and request_timestamps_day[0] < one_day_ago:
|
| 427 |
+
request_timestamps_day.pop(0)
|
| 428 |
+
token_counts_day.pop(0)
|
| 429 |
+
rpd = len(request_timestamps_day)
|
| 430 |
+
tpd = sum(token_counts_day)
|
| 431 |
+
|
| 432 |
+
key_balances = []
|
| 433 |
+
all_keys = list(chain(*key_status.values())) # Get all keys from all statuses
|
| 434 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
|
| 435 |
+
future_to_key = {executor.submit(get_credit_summary, key): key for key in all_keys}
|
| 436 |
+
for future in concurrent.futures.as_completed(future_to_key):
|
| 437 |
+
key = future_to_key[future]
|
| 438 |
+
try:
|
| 439 |
+
credit_summary = future.result()
|
| 440 |
+
balance = credit_summary.get("total_balance") if credit_summary else "获取失败"
|
| 441 |
+
key_balances.append({"key": obfuscate_key(key), "balance": balance})
|
| 442 |
+
except Exception as exc:
|
| 443 |
+
logging.error(f"获取 KEY {obfuscate_key(key)} 余额信息失败: {exc}")
|
| 444 |
+
key_balances.append({"key": obfuscate_key(key), "balance": "获取失败"})
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
return render_template('index.html', rpm=rpm, tpm=tpm, rpd=rpd, tpd=tpd, key_balances=key_balances) # Render template instead of jsonify
|
| 448 |
+
|
| 449 |
+
@app.route('/handsome/v1/models', methods=['GET'])
|
| 450 |
+
def list_models():
|
| 451 |
+
if not check_authorization(request):
|
| 452 |
+
return jsonify({"error": "Unauthorized"}), 401
|
| 453 |
+
detailed_models = []
|
| 454 |
+
all_models = chain(
|
| 455 |
+
models["text"],
|
| 456 |
+
models["embedding"],
|
| 457 |
+
models["image"]
|
| 458 |
+
)
|
| 459 |
+
for model in all_models:
|
| 460 |
+
model_data = {
|
| 461 |
+
"id": model,
|
| 462 |
+
"object": "model",
|
| 463 |
+
"created": 1678888888,
|
| 464 |
+
"owned_by": "openai",
|
| 465 |
+
"permission": [],
|
| 466 |
+
"root": model,
|
| 467 |
+
"parent": None
|
| 468 |
+
}
|
| 469 |
+
detailed_models.append(model_data)
|
| 470 |
+
if "DeepSeek-R1" in model:
|
| 471 |
+
detailed_models.append({
|
| 472 |
+
"id": model + "-thinking",
|
| 473 |
+
"object": "model",
|
| 474 |
+
"created": 1678888888,
|
| 475 |
+
"owned_by": "openai",
|
| 476 |
+
"permission": [],
|
| 477 |
+
"root": model + "-thinking",
|
| 478 |
+
"parent": None
|
| 479 |
+
})
|
| 480 |
+
detailed_models.append({
|
| 481 |
+
"id": model + "-openwebui",
|
| 482 |
+
"object": "model",
|
| 483 |
+
"created": 1678888888,
|
| 484 |
+
"owned_by": "openai",
|
| 485 |
+
"permission": [],
|
| 486 |
+
"root": model + "-openwebui",
|
| 487 |
+
"parent": None
|
| 488 |
+
})
|
| 489 |
+
return jsonify({
|
| 490 |
+
"success": True,
|
| 491 |
+
"data": detailed_models
|
| 492 |
+
})
|
| 493 |
+
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET'])
|
| 494 |
+
def billing_usage():
|
| 495 |
+
if not check_authorization(request):
|
| 496 |
+
return jsonify({"error": "Unauthorized"}), 401
|
| 497 |
+
daily_usage = []
|
| 498 |
+
return jsonify({
|
| 499 |
+
"object": "list",
|
| 500 |
+
"data": daily_usage,
|
| 501 |
+
"total_usage": 0
|
| 502 |
+
})
|
| 503 |
+
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET'])
|
| 504 |
+
def billing_subscription():
|
| 505 |
+
if not check_authorization(request):
|
| 506 |
+
return jsonify({"error": "Unauthorized"}), 401
|
| 507 |
+
keys = valid_keys_global + unverified_keys_global
|
| 508 |
+
total_balance = 0
|
| 509 |
+
with concurrent.futures.ThreadPoolExecutor(
|
| 510 |
+
max_workers=10000
|
| 511 |
+
) as executor:
|
| 512 |
+
futures = [
|
| 513 |
+
executor.submit(get_credit_summary, key) for key in keys
|
| 514 |
+
]
|
| 515 |
+
for future in concurrent.futures.as_completed(futures):
|
| 516 |
+
try:
|
| 517 |
+
credit_summary = future.result()
|
| 518 |
+
if credit_summary:
|
| 519 |
+
total_balance += credit_summary.get("total_balance", 0)
|
| 520 |
+
except Exception as exc:
|
| 521 |
+
logging.error(f"获取额度信息生成异常: {exc}")
|
| 522 |
+
return jsonify({
|
| 523 |
+
"object": "billing_subscription",
|
| 524 |
+
"access_until": int(datetime(9999, 12, 31).timestamp()),
|
| 525 |
+
"soft_limit": 0,
|
| 526 |
+
"hard_limit": total_balance,
|
| 527 |
+
"system_hard_limit": total_balance,
|
| 528 |
+
"soft_limit_usd": 0,
|
| 529 |
+
"hard_limit_usd": total_balance,
|
| 530 |
+
"system_hard_limit_usd": total_balance
|
| 531 |
+
})
|
| 532 |
+
@app.route('/handsome/v1/embeddings', methods=['POST'])
|
| 533 |
+
def handsome_embeddings():
|
| 534 |
+
if not check_authorization(request):
|
| 535 |
+
return jsonify({"error": "Unauthorized"}), 401
|
| 536 |
+
data = request.get_json()
|
| 537 |
+
if not data or 'model' not in data:
|
| 538 |
+
return jsonify({"error": "Invalid request data"}), 400
|
| 539 |
+
if data['model'] not in models["embedding"]:
|
| 540 |
+
return jsonify({"error": "Invalid model"}), 400
|
| 541 |
+
model_name = data['model']
|
| 542 |
+
request_type = determine_request_type(
|
| 543 |
+
model_name,
|
| 544 |
+
models["embedding"],
|
| 545 |
+
models["free_embedding"]
|
| 546 |
+
)
|
| 547 |
+
api_key = select_key(request_type, model_name)
|
| 548 |
+
if not api_key:
|
| 549 |
+
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
|
| 550 |
+
headers = {
|
| 551 |
+
"Authorization": f"Bearer {api_key}",
|
| 552 |
+
"Content-Type": "application/json"
|
| 553 |
+
}
|
| 554 |
+
try:
|
| 555 |
+
start_time = time.time()
|
| 556 |
+
response = requests.post(
|
| 557 |
+
EMBEDDINGS_ENDPOINT,
|
| 558 |
+
headers=headers,
|
| 559 |
+
json=data,
|
| 560 |
+
timeout=120
|
| 561 |
+
)
|
| 562 |
+
if response.status_code == 429:
|
| 563 |
+
return jsonify(response.json()), 429
|
| 564 |
+
response.raise_for_status()
|
| 565 |
+
end_time = time.time()
|
| 566 |
+
response_json = response.json()
|
| 567 |
+
total_time = end_time - start_time
|
| 568 |
+
try:
|
| 569 |
+
prompt_tokens = response_json["usage"]["prompt_tokens"]
|
| 570 |
+
embedding_data = response_json["data"]
|
| 571 |
+
except (KeyError, ValueError, IndexError) as e:
|
| 572 |
+
logging.error(
|
| 573 |
+
f"解析响应 JSON 失败: {e}, "
|
| 574 |
+
f"完整内容: {response_json}"
|
| 575 |
+
)
|
| 576 |
+
prompt_tokens = 0
|
| 577 |
+
embedding_data = []
|
| 578 |
+
logging.info(
|
| 579 |
+
f"使用的key: {api_key}, "
|
| 580 |
+
f"提示token: {prompt_tokens}, "
|
| 581 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 582 |
+
f"使用的模型: {model_name}"
|
| 583 |
+
)
|
| 584 |
+
with data_lock:
|
| 585 |
+
request_timestamps.append(time.time())
|
| 586 |
+
token_counts.append(prompt_tokens)
|
| 587 |
+
request_timestamps_day.append(time.time())
|
| 588 |
+
token_counts_day.append(prompt_tokens)
|
| 589 |
+
return jsonify({
|
| 590 |
+
"object": "list",
|
| 591 |
+
"data": embedding_data,
|
| 592 |
+
"model": model_name,
|
| 593 |
+
"usage": {
|
| 594 |
+
"prompt_tokens": prompt_tokens,
|
| 595 |
+
"total_tokens": prompt_tokens
|
| 596 |
+
}
|
| 597 |
+
})
|
| 598 |
+
except requests.exceptions.RequestException as e:
|
| 599 |
+
return jsonify({"error": str(e)}), 500
|
| 600 |
+
@app.route('/handsome/v1/images/generations', methods=['POST'])
|
| 601 |
+
def handsome_images_generations():
|
| 602 |
+
if not check_authorization(request):
|
| 603 |
+
return jsonify({"error": "Unauthorized"}), 401
|
| 604 |
+
data = request.get_json()
|
| 605 |
+
if not data or 'model' not in data:
|
| 606 |
+
return jsonify({"error": "Invalid request data"}), 400
|
| 607 |
+
if data['model'] not in models["image"]:
|
| 608 |
+
return jsonify({"error": "Invalid model"}), 400
|
| 609 |
+
model_name = data.get('model')
|
| 610 |
+
request_type = determine_request_type(
|
| 611 |
+
model_name,
|
| 612 |
+
models["image"],
|
| 613 |
+
models["free_image"]
|
| 614 |
+
)
|
| 615 |
+
api_key = select_key(request_type, model_name)
|
| 616 |
+
if not api_key:
|
| 617 |
+
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
|
| 618 |
+
headers = {
|
| 619 |
+
"Authorization": f"Bearer {api_key}",
|
| 620 |
+
"Content-Type": "application/json"
|
| 621 |
+
}
|
| 622 |
+
response_data = {}
|
| 623 |
+
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
|
| 624 |
+
siliconflow_data = get_siliconflow_data(model_name, data)
|
| 625 |
+
try:
|
| 626 |
+
start_time = time.time()
|
| 627 |
+
response = requests.post(
|
| 628 |
+
IMAGE_ENDPOINT,
|
| 629 |
+
headers=headers,
|
| 630 |
+
json=siliconflow_data,
|
| 631 |
+
timeout=120
|
| 632 |
+
)
|
| 633 |
+
if response.status_code == 429:
|
| 634 |
+
return jsonify(response.json()), 429
|
| 635 |
+
response.raise_for_status()
|
| 636 |
+
end_time = time.time()
|
| 637 |
+
response_json = response.json()
|
| 638 |
+
total_time = end_time - start_time
|
| 639 |
+
try:
|
| 640 |
+
images = response_json.get("images", [])
|
| 641 |
+
openai_images = []
|
| 642 |
+
for item in images:
|
| 643 |
+
if isinstance(item, dict) and "url" in item:
|
| 644 |
+
image_url = item["url"]
|
| 645 |
+
print(f"image_url: {image_url}")
|
| 646 |
+
if data.get("response_format") == "b64_json":
|
| 647 |
+
try:
|
| 648 |
+
image_data = session.get(image_url, stream=True).raw
|
| 649 |
+
image = Image.open(image_data)
|
| 650 |
+
buffered = io.BytesIO()
|
| 651 |
+
image.save(buffered, format="PNG")
|
| 652 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 653 |
+
openai_images.append({"b64_json": img_str})
|
| 654 |
+
except Exception as e:
|
| 655 |
+
logging.error(f"图片转base64失败: {e}")
|
| 656 |
+
openai_images.append({"url": image_url})
|
| 657 |
+
else:
|
| 658 |
+
openai_images.append({"url": image_url})
|
| 659 |
+
else:
|
| 660 |
+
logging.error(f"无效的图片数据: {item}")
|
| 661 |
+
openai_images.append({"url": item})
|
| 662 |
+
response_data = {
|
| 663 |
+
"created": int(time.time()),
|
| 664 |
+
"data": openai_images
|
| 665 |
+
}
|
| 666 |
+
except (KeyError, ValueError, IndexError) as e:
|
| 667 |
+
logging.error(
|
| 668 |
+
f"解析响应 JSON 失败: {e}, "
|
| 669 |
+
f"完整内容: {response_json}"
|
| 670 |
+
)
|
| 671 |
+
response_data = {
|
| 672 |
+
"created": int(time.time()),
|
| 673 |
+
"data": []
|
| 674 |
+
}
|
| 675 |
+
logging.info(
|
| 676 |
+
f"使用的key: {api_key}, "
|
| 677 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 678 |
+
f"使用的模型: {model_name}"
|
| 679 |
+
)
|
| 680 |
+
with data_lock:
|
| 681 |
+
request_timestamps.append(time.time())
|
| 682 |
+
token_counts.append(0)
|
| 683 |
+
request_timestamps_day.append(time.time())
|
| 684 |
+
token_counts_day.append(0)
|
| 685 |
+
return jsonify(response_data)
|
| 686 |
+
except requests.exceptions.RequestException as e:
|
| 687 |
+
logging.error(f"请求转发异常: {e}")
|
| 688 |
+
return jsonify({"error": str(e)}), 500
|
| 689 |
+
else:
|
| 690 |
+
return jsonify({"error": "Unsupported model"}), 400
|
| 691 |
+
@app.route('/handsome/v1/chat/completions', methods=['POST'])
|
| 692 |
+
def handsome_chat_completions():
|
| 693 |
+
if not check_authorization(request):
|
| 694 |
+
return jsonify({"error": "Unauthorized"}), 401
|
| 695 |
+
data = request.get_json()
|
| 696 |
+
if not data or 'model' not in data:
|
| 697 |
+
return jsonify({"error": "Invalid request data"}), 400
|
| 698 |
+
model_name = data['model']
|
| 699 |
+
if model_name not in models["text"] and model_name not in models["image"]:
|
| 700 |
+
if "DeepSeek-R1" in model_name and (model_name.endswith("-openwebui") or model_name.endswith("-thinking")):
|
| 701 |
+
pass
|
| 702 |
+
else:
|
| 703 |
+
return jsonify({"error": "Invalid model"}), 400
|
| 704 |
+
model_realname = model_name.replace("-thinking", "").replace("-openwebui", "")
|
| 705 |
+
request_type = determine_request_type(
|
| 706 |
+
model_realname,
|
| 707 |
+
models["text"] + models["image"],
|
| 708 |
+
models["free_text"] + models["free_image"]
|
| 709 |
+
)
|
| 710 |
+
api_key = select_key(request_type, model_name)
|
| 711 |
+
if not api_key:
|
| 712 |
+
return jsonify(
|
| 713 |
+
{
|
| 714 |
+
"error": (
|
| 715 |
+
"No available API key for this "
|
| 716 |
+
"request type or all keys have "
|
| 717 |
+
"reached their limits"
|
| 718 |
+
)
|
| 719 |
+
}
|
| 720 |
+
), 429
|
| 721 |
+
headers = {
|
| 722 |
+
"Authorization": f"Bearer {api_key}",
|
| 723 |
+
"Content-Type": "application/json"
|
| 724 |
+
}
|
| 725 |
+
if "DeepSeek-R1" in model_name and ("thinking" in model_name or "openwebui" in model_name):
|
| 726 |
+
data['model'] = model_realname
|
| 727 |
+
start_time = time.time()
|
| 728 |
+
response = requests.post(
|
| 729 |
+
TEST_MODEL_ENDPOINT,
|
| 730 |
+
headers=headers,
|
| 731 |
+
json=data,
|
| 732 |
+
stream=data.get("stream", False),
|
| 733 |
+
timeout=120
|
| 734 |
+
)
|
| 735 |
+
if response.status_code == 429:
|
| 736 |
+
return jsonify(response.json()), 429
|
| 737 |
+
if data.get("stream", False):
|
| 738 |
+
def generate():
|
| 739 |
+
if model_name.endswith("-openwebui"):
|
| 740 |
+
first_chunk_time = None
|
| 741 |
+
full_response_content = ""
|
| 742 |
+
reasoning_content_accumulated = ""
|
| 743 |
+
content_accumulated = ""
|
| 744 |
+
first_reasoning_chunk = True
|
| 745 |
+
for chunk in response.iter_lines():
|
| 746 |
+
if chunk:
|
| 747 |
+
if first_chunk_time is None:
|
| 748 |
+
first_chunk_time = time.time()
|
| 749 |
+
full_response_content += chunk.decode("utf-8")
|
| 750 |
+
for line in chunk.decode("utf-8").splitlines():
|
| 751 |
+
if line.startswith("data:"):
|
| 752 |
+
try:
|
| 753 |
+
chunk_json = json.loads(line.lstrip("data: ").strip())
|
| 754 |
+
if "choices" in chunk_json and len(chunk_json["choices"]) > 0:
|
| 755 |
+
delta = chunk_json["choices"][0].get("delta", {})
|
| 756 |
+
if delta.get("reasoning_content") is not None:
|
| 757 |
+
reasoning_chunk = delta["reasoning_content"]
|
| 758 |
+
if first_reasoning_chunk:
|
| 759 |
+
think_chunk = f"<"
|
| 760 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
|
| 761 |
+
think_chunk = f"think"
|
| 762 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
|
| 763 |
+
think_chunk = f">\n"
|
| 764 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
|
| 765 |
+
first_reasoning_chunk = False
|
| 766 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
|
| 767 |
+
if delta.get("content") is not None:
|
| 768 |
+
if not first_reasoning_chunk:
|
| 769 |
+
reasoning_chunk = f"\n</think>\n"
|
| 770 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
|
| 771 |
+
first_reasoning_chunk = True
|
| 772 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n"
|
| 773 |
+
except (KeyError, ValueError, json.JSONDecodeError) as e:
|
| 774 |
+
continue
|
| 775 |
+
end_time = time.time()
|
| 776 |
+
first_token_time = (
|
| 777 |
+
first_chunk_time - start_time
|
| 778 |
+
if first_chunk_time else 0
|
| 779 |
+
)
|
| 780 |
+
total_time = end_time - start_time
|
| 781 |
+
prompt_tokens = 0
|
| 782 |
+
completion_tokens = 0
|
| 783 |
+
for line in full_response_content.splitlines():
|
| 784 |
+
if line.startswith("data:"):
|
| 785 |
+
line = line[5:].strip()
|
| 786 |
+
if line == "[DONE]":
|
| 787 |
+
continue
|
| 788 |
+
try:
|
| 789 |
+
response_json = json.loads(line)
|
| 790 |
+
if (
|
| 791 |
+
"usage" in response_json and
|
| 792 |
+
"completion_tokens" in response_json["usage"]
|
| 793 |
+
):
|
| 794 |
+
completion_tokens += response_json[
|
| 795 |
+
"usage"
|
| 796 |
+
]["completion_tokens"]
|
| 797 |
+
if (
|
| 798 |
+
"usage" in response_json and
|
| 799 |
+
"prompt_tokens" in response_json["usage"]
|
| 800 |
+
):
|
| 801 |
+
prompt_tokens = response_json[
|
| 802 |
+
"usage"
|
| 803 |
+
]["prompt_tokens"]
|
| 804 |
+
except ( KeyError,ValueError,IndexError) as e:
|
| 805 |
+
pass
|
| 806 |
+
user_content = ""
|
| 807 |
+
messages = data.get("messages", [])
|
| 808 |
+
for message in messages:
|
| 809 |
+
if message["role"] == "user":
|
| 810 |
+
if isinstance(message["content"], str):
|
| 811 |
+
user_content += message["content"] + " "
|
| 812 |
+
elif isinstance(message["content"], list):
|
| 813 |
+
for item in message["content"]:
|
| 814 |
+
if (
|
| 815 |
+
isinstance(item, dict) and
|
| 816 |
+
item.get("type") == "text"
|
| 817 |
+
):
|
| 818 |
+
user_content += (
|
| 819 |
+
item.get("text", "") +
|
| 820 |
+
" "
|
| 821 |
+
)
|
| 822 |
+
user_content = user_content.strip()
|
| 823 |
+
user_content_replaced = user_content.replace(
|
| 824 |
+
'\n', '\\n'
|
| 825 |
+
).replace('\r', '\\n')
|
| 826 |
+
response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated
|
| 827 |
+
response_content_replaced = response_content_replaced.replace(
|
| 828 |
+
'\n', '\\n'
|
| 829 |
+
).replace('\r', '\\n')
|
| 830 |
+
logging.info(
|
| 831 |
+
f"使用的key: {api_key}, "
|
| 832 |
+
f"提示token: {prompt_tokens}, "
|
| 833 |
+
f"输出token: {completion_tokens}, "
|
| 834 |
+
f"首字用时: {first_token_time:.4f}秒, "
|
| 835 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 836 |
+
f"使用的模型: {model_name}, "
|
| 837 |
+
f"用户的内容: {user_content_replaced}, "
|
| 838 |
+
f"输出的内容: {response_content_replaced}"
|
| 839 |
+
)
|
| 840 |
+
with data_lock:
|
| 841 |
+
request_timestamps.append(time.time())
|
| 842 |
+
token_counts.append(prompt_tokens + completion_tokens)
|
| 843 |
+
yield "data: [DONE]\n\n"
|
| 844 |
+
return Response(
|
| 845 |
+
stream_with_context(generate()),
|
| 846 |
+
content_type="text/event-stream"
|
| 847 |
+
)
|
| 848 |
+
first_chunk_time = None
|
| 849 |
+
full_response_content = ""
|
| 850 |
+
reasoning_content_accumulated = ""
|
| 851 |
+
content_accumulated = ""
|
| 852 |
+
first_reasoning_chunk = True
|
| 853 |
+
for chunk in response.iter_lines():
|
| 854 |
+
if chunk:
|
| 855 |
+
if first_chunk_time is None:
|
| 856 |
+
first_chunk_time = time.time()
|
| 857 |
+
full_response_content += chunk.decode("utf-8")
|
| 858 |
+
for line in chunk.decode("utf-8").splitlines():
|
| 859 |
+
if line.startswith("data:"):
|
| 860 |
+
try:
|
| 861 |
+
chunk_json = json.loads(line.lstrip("data: ").strip())
|
| 862 |
+
if "choices" in chunk_json and len(chunk_json["choices"]) > 0:
|
| 863 |
+
delta = chunk_json["choices"][0].get("delta", {})
|
| 864 |
+
if delta.get("reasoning_content") is not None:
|
| 865 |
+
reasoning_chunk = delta["reasoning_content"]
|
| 866 |
+
reasoning_chunk = reasoning_chunk.replace('\n', '\n> ')
|
| 867 |
+
if first_reasoning_chunk:
|
| 868 |
+
reasoning_chunk = "> " + reasoning_chunk
|
| 869 |
+
first_reasoning_chunk = False
|
| 870 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
|
| 871 |
+
if delta.get("content") is not None:
|
| 872 |
+
if not first_reasoning_chunk:
|
| 873 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': '\n\n'}, 'index': 0}]})}\n\n"
|
| 874 |
+
first_reasoning_chunk = True
|
| 875 |
+
yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n"
|
| 876 |
+
except (KeyError, ValueError, json.JSONDecodeError) as e:
|
| 877 |
+
continue
|
| 878 |
+
end_time = time.time()
|
| 879 |
+
first_token_time = (
|
| 880 |
+
first_chunk_time - start_time
|
| 881 |
+
if first_chunk_time else 0
|
| 882 |
+
)
|
| 883 |
+
total_time = end_time - start_time
|
| 884 |
+
prompt_tokens = 0
|
| 885 |
+
completion_tokens = 0
|
| 886 |
+
for line in full_response_content.splitlines():
|
| 887 |
+
if line.startswith("data:"):
|
| 888 |
+
line = line[5:].strip()
|
| 889 |
+
if line == "[DONE]":
|
| 890 |
+
continue
|
| 891 |
+
try:
|
| 892 |
+
response_json = json.loads(line)
|
| 893 |
+
if (
|
| 894 |
+
"usage" in response_json and
|
| 895 |
+
"completion_tokens" in response_json["usage"]
|
| 896 |
+
):
|
| 897 |
+
completion_tokens += response_json[
|
| 898 |
+
"usage"
|
| 899 |
+
]["completion_tokens"]
|
| 900 |
+
if (
|
| 901 |
+
"usage" in response_json and
|
| 902 |
+
"prompt_tokens" in response_json["usage"]
|
| 903 |
+
):
|
| 904 |
+
prompt_tokens = response_json[
|
| 905 |
+
"usage"
|
| 906 |
+
]["prompt_tokens"]
|
| 907 |
+
except (KeyError,ValueError,IndexError) as e:
|
| 908 |
+
pass
|
| 909 |
+
user_content = ""
|
| 910 |
+
messages = data.get("messages", [])
|
| 911 |
+
for message in messages:
|
| 912 |
+
if message["role"] == "user":
|
| 913 |
+
if isinstance(message["content"], str):
|
| 914 |
+
user_content += message["content"] + " "
|
| 915 |
+
elif isinstance(message["content"], list):
|
| 916 |
+
for item in message["content"]:
|
| 917 |
+
if (
|
| 918 |
+
isinstance(item, dict) and
|
| 919 |
+
item.get("type") == "text"
|
| 920 |
+
):
|
| 921 |
+
user_content += (
|
| 922 |
+
item.get("text", "") +
|
| 923 |
+
" "
|
| 924 |
+
)
|
| 925 |
+
user_content = user_content.strip()
|
| 926 |
+
user_content_replaced = user_content.replace(
|
| 927 |
+
'\n', '\\n'
|
| 928 |
+
).replace('\r', '\\n')
|
| 929 |
+
response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated
|
| 930 |
+
response_content_replaced = response_content_replaced.replace(
|
| 931 |
+
'\n', '\\n'
|
| 932 |
+
).replace('\r', '\\n')
|
| 933 |
+
logging.info(
|
| 934 |
+
f"使用的key: {api_key}, "
|
| 935 |
+
f"提示token: {prompt_tokens}, "
|
| 936 |
+
f"输出token: {completion_tokens}, "
|
| 937 |
+
f"首字用时: {first_token_time:.4f}秒, "
|
| 938 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 939 |
+
f"使用的模型: {model_name}, "
|
| 940 |
+
f"用户的内容: {user_content_replaced}, "
|
| 941 |
+
f"输出的内容: {response_content_replaced}"
|
| 942 |
+
)
|
| 943 |
+
with data_lock:
|
| 944 |
+
request_timestamps.append(time.time())
|
| 945 |
+
token_counts.append(prompt_tokens + completion_tokens)
|
| 946 |
+
yield "data: [DONE]\n\n"
|
| 947 |
+
return Response(
|
| 948 |
+
stream_with_context(generate()),
|
| 949 |
+
content_type="text/event-stream"
|
| 950 |
+
)
|
| 951 |
+
else:
|
| 952 |
+
response.raise_for_status()
|
| 953 |
+
end_time = time.time()
|
| 954 |
+
response_json = response.json()
|
| 955 |
+
total_time = end_time - start_time
|
| 956 |
+
try:
|
| 957 |
+
prompt_tokens = response_json["usage"]["prompt_tokens"]
|
| 958 |
+
completion_tokens = response_json["usage"]["completion_tokens"]
|
| 959 |
+
response_content = ""
|
| 960 |
+
if model_name.endswith("-thinking") and "choices" in response_json and len(response_json["choices"]) > 0:
|
| 961 |
+
choice = response_json["choices"][0]
|
| 962 |
+
if "message" in choice:
|
| 963 |
+
if "reasoning_content" in choice["message"]:
|
| 964 |
+
reasoning_content = choice["message"]["reasoning_content"]
|
| 965 |
+
reasoning_content = reasoning_content.replace('\n', '\n> ')
|
| 966 |
+
reasoning_content = '> ' + reasoning_content
|
| 967 |
+
formatted_reasoning = f"{reasoning_content}\n"
|
| 968 |
+
response_content += formatted_reasoning + "\n"
|
| 969 |
+
if "content" in choice["message"]:
|
| 970 |
+
response_content += choice["message"]["content"]
|
| 971 |
+
elif model_name.endswith("-openwebui") and "choices" in response_json and len(response_json["choices"]) > 0:
|
| 972 |
+
choice = response_json["choices"][0]
|
| 973 |
+
if "message" in choice:
|
| 974 |
+
if "reasoning_content" in choice["message"]:
|
| 975 |
+
reasoning_content = choice["message"]["reasoning_content"]
|
| 976 |
+
response_content += f"<think>\n{reasoning_content}\n</think>\n"
|
| 977 |
+
if "content" in choice["message"]:
|
| 978 |
+
response_content += choice["message"]["content"]
|
| 979 |
+
except (KeyError, ValueError, IndexError) as e:
|
| 980 |
+
logging.error(
|
| 981 |
+
f"解析非流式响应 JSON 失败: {e}, "
|
| 982 |
+
f"完整内容: {response_json}"
|
| 983 |
+
)
|
| 984 |
+
prompt_tokens = 0
|
| 985 |
+
completion_tokens = 0
|
| 986 |
+
response_content = ""
|
| 987 |
+
user_content = ""
|
| 988 |
+
messages = data.get("messages", [])
|
| 989 |
+
for message in messages:
|
| 990 |
+
if message["role"] == "user":
|
| 991 |
+
if isinstance(message["content"], str):
|
| 992 |
+
user_content += message["content"] + " "
|
| 993 |
+
elif isinstance(message["content"], list):
|
| 994 |
+
for item in message["content"]:
|
| 995 |
+
if (
|
| 996 |
+
isinstance(item, dict) and
|
| 997 |
+
item.get("type") == "text"
|
| 998 |
+
):
|
| 999 |
+
user_content += (
|
| 1000 |
+
item.get("text", "") +
|
| 1001 |
+
" "
|
| 1002 |
+
)
|
| 1003 |
+
user_content = user_content.strip()
|
| 1004 |
+
user_content_replaced = user_content.replace(
|
| 1005 |
+
'\n', '\\n'
|
| 1006 |
+
).replace('\r', '\\n')
|
| 1007 |
+
response_content_replaced = response_content.replace(
|
| 1008 |
+
'\n', '\\n'
|
| 1009 |
+
).replace('\r', '\\n')
|
| 1010 |
+
logging.info(
|
| 1011 |
+
f"使用的key: {api_key}, "
|
| 1012 |
+
f"提示token: {prompt_tokens}, "
|
| 1013 |
+
f"输出token: {completion_tokens}, "
|
| 1014 |
+
f"首字用时: 0, "
|
| 1015 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 1016 |
+
f"使用的模型: {model_name}, "
|
| 1017 |
+
f"用户的内容: {user_content_replaced}, "
|
| 1018 |
+
f"输出的内容: {response_content_replaced}"
|
| 1019 |
+
)
|
| 1020 |
+
with data_lock:
|
| 1021 |
+
request_timestamps.append(time.time())
|
| 1022 |
+
token_counts.append(prompt_tokens + completion_tokens)
|
| 1023 |
+
formatted_response = {
|
| 1024 |
+
"id": response_json.get("id", ""),
|
| 1025 |
+
"object": "chat.completion",
|
| 1026 |
+
"created": response_json.get("created", int(time.time())),
|
| 1027 |
+
"model": model_name,
|
| 1028 |
+
"choices": [
|
| 1029 |
+
{
|
| 1030 |
+
"index": 0,
|
| 1031 |
+
"message": {
|
| 1032 |
+
"role": "assistant",
|
| 1033 |
+
"content": response_content
|
| 1034 |
+
},
|
| 1035 |
+
"finish_reason": "stop"
|
| 1036 |
+
}
|
| 1037 |
+
],
|
| 1038 |
+
"usage": {
|
| 1039 |
+
"prompt_tokens": prompt_tokens,
|
| 1040 |
+
"completion_tokens": completion_tokens,
|
| 1041 |
+
"total_tokens": prompt_tokens + completion_tokens
|
| 1042 |
+
}
|
| 1043 |
+
}
|
| 1044 |
+
return jsonify(formatted_response)
|
| 1045 |
+
if model_name in models["image"]:
|
| 1046 |
+
if isinstance(data.get("messages"), list):
|
| 1047 |
+
data = data.copy()
|
| 1048 |
+
data["prompt"] = extract_user_content(data["messages"])
|
| 1049 |
+
siliconflow_data = get_siliconflow_data(model_name, data)
|
| 1050 |
+
try:
|
| 1051 |
+
start_time = time.time()
|
| 1052 |
+
response = requests.post(
|
| 1053 |
+
IMAGE_ENDPOINT,
|
| 1054 |
+
headers=headers,
|
| 1055 |
+
json=siliconflow_data,
|
| 1056 |
+
stream=data.get("stream", False)
|
| 1057 |
+
)
|
| 1058 |
+
if response.status_code == 429:
|
| 1059 |
+
return jsonify(response.json()), 429
|
| 1060 |
+
if data.get("stream", False):
|
| 1061 |
+
def generate():
|
| 1062 |
+
try:
|
| 1063 |
+
response.raise_for_status()
|
| 1064 |
+
response_json = response.json()
|
| 1065 |
+
images = response_json.get("images", [])
|
| 1066 |
+
image_url = ""
|
| 1067 |
+
if images and isinstance(images[0], dict) and "url" in images[0]:
|
| 1068 |
+
image_url = images[0]["url"]
|
| 1069 |
+
logging.info(f"Extracted image URL: {image_url}")
|
| 1070 |
+
elif images and isinstance(images[0], str):
|
| 1071 |
+
image_url = images[0]
|
| 1072 |
+
logging.info(f"Extracted image URL: {image_url}")
|
| 1073 |
+
markdown_image_link = create_base64_markdown_image(image_url)
|
| 1074 |
+
if image_url:
|
| 1075 |
+
chunk_size = 8192
|
| 1076 |
+
for i in range(0, len(markdown_image_link), chunk_size):
|
| 1077 |
+
chunk = markdown_image_link[i:i + chunk_size]
|
| 1078 |
+
chunk_data = {
|
| 1079 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1080 |
+
"object": "chat.completion.chunk",
|
| 1081 |
+
"created": int(time.time()),
|
| 1082 |
+
"model": model_name,
|
| 1083 |
+
"choices": [
|
| 1084 |
+
{
|
| 1085 |
+
"index": 0,
|
| 1086 |
+
"delta": {
|
| 1087 |
+
"role": "assistant",
|
| 1088 |
+
"content": chunk
|
| 1089 |
+
},
|
| 1090 |
+
"finish_reason": None
|
| 1091 |
+
}
|
| 1092 |
+
]
|
| 1093 |
+
}
|
| 1094 |
+
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
| 1095 |
+
else:
|
| 1096 |
+
chunk_data = {
|
| 1097 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1098 |
+
"object": "chat.completion.chunk",
|
| 1099 |
+
"created": int(time.time()),
|
| 1100 |
+
"model": model_name,
|
| 1101 |
+
"choices": [
|
| 1102 |
+
{
|
| 1103 |
+
"index": 0,
|
| 1104 |
+
"delta": {
|
| 1105 |
+
"role": "assistant",
|
| 1106 |
+
"content": "Failed to generate image"
|
| 1107 |
+
},
|
| 1108 |
+
"finish_reason": None
|
| 1109 |
+
}
|
| 1110 |
+
]
|
| 1111 |
+
}
|
| 1112 |
+
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
| 1113 |
+
end_chunk_data = {
|
| 1114 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1115 |
+
"object": "chat.completion.chunk",
|
| 1116 |
+
"created": int(time.time()),
|
| 1117 |
+
"model": model_name,
|
| 1118 |
+
"choices": [
|
| 1119 |
+
{
|
| 1120 |
+
"index": 0,
|
| 1121 |
+
"delta": {},
|
| 1122 |
+
"finish_reason": "stop"
|
| 1123 |
+
}
|
| 1124 |
+
]
|
| 1125 |
+
}
|
| 1126 |
+
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
| 1127 |
+
with data_lock:
|
| 1128 |
+
request_timestamps.append(time.time())
|
| 1129 |
+
token_counts.append(0)
|
| 1130 |
+
request_timestamps_day.append(time.time())
|
| 1131 |
+
token_counts_day.append(0)
|
| 1132 |
+
except requests.exceptions.RequestException as e:
|
| 1133 |
+
logging.error(f"请求转发异常: {e}")
|
| 1134 |
+
error_chunk_data = {
|
| 1135 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1136 |
+
"object": "chat.completion.chunk",
|
| 1137 |
+
"created": int(time.time()),
|
| 1138 |
+
"model": model_name,
|
| 1139 |
+
"choices": [
|
| 1140 |
+
{
|
| 1141 |
+
"index": 0,
|
| 1142 |
+
"delta": {
|
| 1143 |
+
"role": "assistant",
|
| 1144 |
+
"content": f"Error: {str(e)}"
|
| 1145 |
+
},
|
| 1146 |
+
"finish_reason": None
|
| 1147 |
+
}
|
| 1148 |
+
]
|
| 1149 |
+
}
|
| 1150 |
+
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
| 1151 |
+
end_chunk_data = {
|
| 1152 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1153 |
+
"object": "chat.completion.chunk",
|
| 1154 |
+
"created": int(time.time()),
|
| 1155 |
+
"model": model_name,
|
| 1156 |
+
"choices": [
|
| 1157 |
+
{
|
| 1158 |
+
"index": 0,
|
| 1159 |
+
"delta": {},
|
| 1160 |
+
"finish_reason": "stop"
|
| 1161 |
+
}
|
| 1162 |
+
]
|
| 1163 |
+
}
|
| 1164 |
+
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
| 1165 |
+
logging.info(
|
| 1166 |
+
f"使用的key: {api_key}, "
|
| 1167 |
+
f"使用的模型: {model_name}"
|
| 1168 |
+
)
|
| 1169 |
+
yield "data: [DONE]\n\n".encode('utf-8')
|
| 1170 |
+
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
| 1171 |
+
else:
|
| 1172 |
+
response.raise_for_status()
|
| 1173 |
+
end_time = time.time()
|
| 1174 |
+
response_json = response.json()
|
| 1175 |
+
total_time = end_time - start_time
|
| 1176 |
+
try:
|
| 1177 |
+
images = response_json.get("images", [])
|
| 1178 |
+
image_url = ""
|
| 1179 |
+
if images and isinstance(images[0], dict) and "url" in images[0]:
|
| 1180 |
+
image_url = images[0]["url"]
|
| 1181 |
+
logging.info(f"Extracted image URL: {image_url}")
|
| 1182 |
+
elif images and isinstance(images[0], str):
|
| 1183 |
+
image_url = images[0]
|
| 1184 |
+
logging.info(f"Extracted image URL: {image_url}")
|
| 1185 |
+
markdown_image_link = f""
|
| 1186 |
+
response_data = {
|
| 1187 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1188 |
+
"object": "chat.completion",
|
| 1189 |
+
"created": int(time.time()),
|
| 1190 |
+
"model": model_name,
|
| 1191 |
+
"choices": [
|
| 1192 |
+
{
|
| 1193 |
+
"index": 0,
|
| 1194 |
+
"message": {
|
| 1195 |
+
"role": "assistant",
|
| 1196 |
+
"content": markdown_image_link if image_url else "Failed to generate image",
|
| 1197 |
+
},
|
| 1198 |
+
"finish_reason": "stop",
|
| 1199 |
+
}
|
| 1200 |
+
],
|
| 1201 |
+
}
|
| 1202 |
+
except (KeyError, ValueError, IndexError) as e:
|
| 1203 |
+
logging.error(
|
| 1204 |
+
f"解析响应 JSON 失败: {e}, "
|
| 1205 |
+
f"完整内容: {response_json}"
|
| 1206 |
+
)
|
| 1207 |
+
response_data = {
|
| 1208 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1209 |
+
"object": "chat.completion",
|
| 1210 |
+
"created": int(time.time()),
|
| 1211 |
+
"model": model_name,
|
| 1212 |
+
"choices": [
|
| 1213 |
+
{
|
| 1214 |
+
"index": 0,
|
| 1215 |
+
"message": {
|
| 1216 |
+
"role": "assistant",
|
| 1217 |
+
"content": "Failed to process image data",
|
| 1218 |
+
},
|
| 1219 |
+
"finish_reason": "stop",
|
| 1220 |
+
}
|
| 1221 |
+
],
|
| 1222 |
+
}
|
| 1223 |
+
logging.info(
|
| 1224 |
+
f"使用的key: {api_key}, "
|
| 1225 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 1226 |
+
f"使用的模型: {model_name}"
|
| 1227 |
+
)
|
| 1228 |
+
with data_lock:
|
| 1229 |
+
request_timestamps.append(time.time())
|
| 1230 |
+
token_counts.append(0)
|
| 1231 |
+
request_timestamps_day.append(time.time())
|
| 1232 |
+
token_counts_day.append(0)
|
| 1233 |
+
return jsonify(response_data)
|
| 1234 |
+
except requests.exceptions.RequestException as e:
|
| 1235 |
+
logging.error(f"请求转发异常: {e}")
|
| 1236 |
+
return jsonify({"error": str(e)}), 500
|
| 1237 |
+
else:
|
| 1238 |
+
try:
|
| 1239 |
+
start_time = time.time()
|
| 1240 |
+
response = requests.post(
|
| 1241 |
+
TEST_MODEL_ENDPOINT,
|
| 1242 |
+
headers=headers,
|
| 1243 |
+
json=data,
|
| 1244 |
+
stream=data.get("stream", False)
|
| 1245 |
+
)
|
| 1246 |
+
if response.status_code == 429:
|
| 1247 |
+
return jsonify(response.json()), 429
|
| 1248 |
+
if data.get("stream", False):
|
| 1249 |
+
def generate():
|
| 1250 |
+
first_chunk_time = None
|
| 1251 |
+
full_response_content = ""
|
| 1252 |
+
for chunk in response.iter_content(chunk_size=2048):
|
| 1253 |
+
if chunk:
|
| 1254 |
+
if first_chunk_time is None:
|
| 1255 |
+
first_chunk_time = time.time()
|
| 1256 |
+
full_response_content += chunk.decode("utf-8")
|
| 1257 |
+
yield chunk
|
| 1258 |
+
end_time = time.time()
|
| 1259 |
+
first_token_time = (
|
| 1260 |
+
first_chunk_time - start_time
|
| 1261 |
+
if first_chunk_time else 0
|
| 1262 |
+
)
|
| 1263 |
+
total_time = end_time - start_time
|
| 1264 |
+
prompt_tokens = 0
|
| 1265 |
+
completion_tokens = 0
|
| 1266 |
+
response_content = ""
|
| 1267 |
+
for line in full_response_content.splitlines():
|
| 1268 |
+
if line.startswith("data:"):
|
| 1269 |
+
line = line[5:].strip()
|
| 1270 |
+
if line == "[DONE]":
|
| 1271 |
+
continue
|
| 1272 |
+
try:
|
| 1273 |
+
response_json = json.loads(line)
|
| 1274 |
+
if (
|
| 1275 |
+
"usage" in response_json and
|
| 1276 |
+
"completion_tokens" in response_json["usage"]
|
| 1277 |
+
):
|
| 1278 |
+
completion_tokens = response_json[
|
| 1279 |
+
"usage"
|
| 1280 |
+
]["completion_tokens"]
|
| 1281 |
+
if (
|
| 1282 |
+
"choices" in response_json and
|
| 1283 |
+
len(response_json["choices"]) > 0 and
|
| 1284 |
+
"delta" in response_json["choices"][0] and
|
| 1285 |
+
"content" in response_json[
|
| 1286 |
+
"choices"
|
| 1287 |
+
][0]["delta"]
|
| 1288 |
+
):
|
| 1289 |
+
response_content += response_json[
|
| 1290 |
+
"choices"
|
| 1291 |
+
][0]["delta"]["content"]
|
| 1292 |
+
if (
|
| 1293 |
+
"usage" in response_json and
|
| 1294 |
+
"prompt_tokens" in response_json["usage"]
|
| 1295 |
+
):
|
| 1296 |
+
prompt_tokens = response_json[
|
| 1297 |
+
"usage"
|
| 1298 |
+
]["prompt_tokens"]
|
| 1299 |
+
except (
|
| 1300 |
+
KeyError,
|
| 1301 |
+
ValueError,
|
| 1302 |
+
IndexError
|
| 1303 |
+
) as e:
|
| 1304 |
+
logging.error(
|
| 1305 |
+
f"解析流式响应单行 JSON 失败: {e}, "
|
| 1306 |
+
f"行内容: {line}"
|
| 1307 |
+
)
|
| 1308 |
+
user_content = extract_user_content(data.get("messages", []))
|
| 1309 |
+
user_content_replaced = user_content.replace(
|
| 1310 |
+
'\n', '\\n'
|
| 1311 |
+
).replace('\r', '\\n')
|
| 1312 |
+
response_content_replaced = response_content.replace(
|
| 1313 |
+
'\n', '\\n'
|
| 1314 |
+
).replace('\r', '\\n')
|
| 1315 |
+
logging.info(
|
| 1316 |
+
f"使用的key: {api_key}, "
|
| 1317 |
+
f"提示token: {prompt_tokens}, "
|
| 1318 |
+
f"输出token: {completion_tokens}, "
|
| 1319 |
+
f"首字用时: {first_token_time:.4f}秒, "
|
| 1320 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 1321 |
+
f"使用的模型: {model_name}, "
|
| 1322 |
+
f"用户的内容: {user_content_replaced}, "
|
| 1323 |
+
f"输出的内容: {response_content_replaced}"
|
| 1324 |
+
)
|
| 1325 |
+
with data_lock:
|
| 1326 |
+
request_timestamps.append(time.time())
|
| 1327 |
+
token_counts.append(prompt_tokens+completion_tokens)
|
| 1328 |
+
request_timestamps_day.append(time.time())
|
| 1329 |
+
token_counts_day.append(prompt_tokens+completion_tokens)
|
| 1330 |
+
return Response(
|
| 1331 |
+
stream_with_context(generate()),
|
| 1332 |
+
content_type=response.headers['Content-Type']
|
| 1333 |
+
)
|
| 1334 |
+
else:
|
| 1335 |
+
response.raise_for_status()
|
| 1336 |
+
end_time = time.time()
|
| 1337 |
+
response_json = response.json()
|
| 1338 |
+
total_time = end_time - start_time
|
| 1339 |
+
try:
|
| 1340 |
+
prompt_tokens = response_json["usage"]["prompt_tokens"]
|
| 1341 |
+
completion_tokens = response_json[
|
| 1342 |
+
"usage"
|
| 1343 |
+
]["completion_tokens"]
|
| 1344 |
+
response_content = response_json[
|
| 1345 |
+
"choices"
|
| 1346 |
+
][0]["message"]["content"]
|
| 1347 |
+
except (KeyError, ValueError, IndexError) as e:
|
| 1348 |
+
logging.error(
|
| 1349 |
+
f"解析非流式响应 JSON 失败: {e}, "
|
| 1350 |
+
f"完整内容: {response_json}"
|
| 1351 |
+
)
|
| 1352 |
+
prompt_tokens = 0
|
| 1353 |
+
completion_tokens = 0
|
| 1354 |
+
response_content = ""
|
| 1355 |
+
user_content = extract_user_content(data.get("messages", []))
|
| 1356 |
+
user_content_replaced = user_content.replace(
|
| 1357 |
+
'\n', '\\n'
|
| 1358 |
+
).replace('\r', '\\n')
|
| 1359 |
+
response_content_replaced = response_content.replace(
|
| 1360 |
+
'\n', '\\n'
|
| 1361 |
+
).replace('\r', '\\n')
|
| 1362 |
+
logging.info(
|
| 1363 |
+
f"使用的key: {api_key}, "
|
| 1364 |
+
f"提示token: {prompt_tokens}, "
|
| 1365 |
+
f"输出token: {completion_tokens}, "
|
| 1366 |
+
f"首字用时: 0, "
|
| 1367 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 1368 |
+
f"使用的模型: {model_name}, "
|
| 1369 |
+
f"用户的内容: {user_content_replaced}, "
|
| 1370 |
+
f"输出的内容: {response_content_replaced}"
|
| 1371 |
+
)
|
| 1372 |
+
with data_lock:
|
| 1373 |
+
request_timestamps.append(time.time())
|
| 1374 |
+
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
|
| 1375 |
+
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
|
| 1376 |
+
else:
|
| 1377 |
+
token_counts.append(0)
|
| 1378 |
+
request_timestamps_day.append(time.time())
|
| 1379 |
+
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
|
| 1380 |
+
token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
|
| 1381 |
+
else:
|
| 1382 |
+
token_counts_day.append(0)
|
| 1383 |
+
return jsonify(response_json)
|
| 1384 |
+
except requests.exceptions.RequestException as e:
|
| 1385 |
+
logging.error(f"请求转发异常: {e}")
|
| 1386 |
+
return jsonify({"error": str(e)}), 500
|
| 1387 |
+
if __name__ == '__main__':
|
| 1388 |
+
logging.info(f"环境变量:{os.environ}")
|
| 1389 |
+
load_keys()
|
| 1390 |
+
logging.info("程序启动时首次加载 keys 已执行")
|
| 1391 |
+
scheduler.start()
|
| 1392 |
+
logging.info("首次加载 keys 已手动触发执行")
|
| 1393 |
+
refresh_models()
|
| 1394 |
+
logging.info("首次刷新模型列表已手动触发执行")
|
| 1395 |
+
app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860)))
|
| 1396 |
+
|