Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from tensorflow import keras
|
| 4 |
+
from tensorflow.keras import layers
|
| 5 |
+
from matplotlib import pyplot as plt
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from huggingface_hub import from_pretrained_keras
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
model = from_pretrained_keras('geninhu/attention_mil')
|
| 14 |
+
|
| 15 |
+
# functions for inference
|
| 16 |
+
IMG_SIZE = 28
|
| 17 |
+
|
| 18 |
+
# resize the image and it to a float between 0,1
|
| 19 |
+
def plot(input_images=None, predictions=None, attention_weights=None):
|
| 20 |
+
bag_class = np.argmax(predictions)
|
| 21 |
+
bag_class = 'This set of image does not contain number 8' if bag_class == 0 else 'This set of image contains number 8'
|
| 22 |
+
|
| 23 |
+
# attention_weights = [round(i, 2) for i in attention_weights]
|
| 24 |
+
prob_str = f"Each image probability: {attention_weights[0]:.2f}, {attention_weights[1]:.2f}, {attention_weights[2]:.2f}"
|
| 25 |
+
|
| 26 |
+
if input_images is not None:
|
| 27 |
+
figure = plt.figure(figsize=(8, 8))
|
| 28 |
+
for j in range(len(input_images)):
|
| 29 |
+
image = input_images[j]
|
| 30 |
+
figure.add_subplot(1, len(input_images), j + 1)
|
| 31 |
+
plt.grid(False)
|
| 32 |
+
if attention_weights is not None:
|
| 33 |
+
plt.title(f"prob={attention_weights[j]:.2f}")
|
| 34 |
+
plt.imshow(np.squeeze(input_images[j]))
|
| 35 |
+
return [bag_class, plt.gcf()]
|
| 36 |
+
|
| 37 |
+
return [bag_class, prob_str]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def preprocess_image(image):
|
| 41 |
+
# image = image[:, :, 0]
|
| 42 |
+
image = image / 255.0
|
| 43 |
+
image = np.expand_dims(image, axis = 0)
|
| 44 |
+
return image
|
| 45 |
+
|
| 46 |
+
def infer(input_images_1, input_images_2, input_images_3):
|
| 47 |
+
if (input_images_1 is not None) & (input_images_2 is not None) & (input_images_3 is not None):
|
| 48 |
+
# Normalize input data
|
| 49 |
+
input_images_1 = preprocess_image(input_images_1)
|
| 50 |
+
input_images_2 = preprocess_image(input_images_2)
|
| 51 |
+
input_images_3 = preprocess_image(input_images_3)
|
| 52 |
+
|
| 53 |
+
# Collect info per model.
|
| 54 |
+
prediction = model.predict([input_images_1, input_images_2, input_images_3])
|
| 55 |
+
prediction = np.squeeze(np.swapaxes(prediction, 1, 0))
|
| 56 |
+
intermediate_model = keras.Model(model.input, model.get_layer("alpha").output)
|
| 57 |
+
intermediate_predictions = intermediate_model.predict([input_images_1, input_images_2, input_images_3])
|
| 58 |
+
attention_weights = np.squeeze(np.swapaxes(intermediate_predictions, 1, 0))
|
| 59 |
+
|
| 60 |
+
return plot(
|
| 61 |
+
[input_images_1, input_images_2, input_images_3],
|
| 62 |
+
predictions=prediction,
|
| 63 |
+
attention_weights=attention_weights
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# get the inputs
|
| 67 |
+
input1 = gr.Image(shape=(28, 28), type='numpy', image_mode='L', label='First image', show_label=True, visible=True)
|
| 68 |
+
input2 = gr.Image(shape=(28, 28), type='numpy', image_mode='L', label='Second image', show_label=True, visible=True)
|
| 69 |
+
input3 = gr.Image(shape=(28, 28), type='numpy', image_mode='L', label='Third image', show_label=True, visible=True)
|
| 70 |
+
# the app outputs two segmented images
|
| 71 |
+
output = [gr.Label(), gr.Plot()]
|
| 72 |
+
# output = [gr.Plot()]
|
| 73 |
+
# it's good practice to pass examples, description and a title to guide users
|
| 74 |
+
title = 'Image classification'
|
| 75 |
+
description = 'Upload an image'
|
| 76 |
+
|
| 77 |
+
gr_interface = gr.Interface(
|
| 78 |
+
infer, inputs=[input1, input2, input3], outputs=output, allow_flagging='never',
|
| 79 |
+
analytics_enabled=False, title=title, description=description, live=True,
|
| 80 |
+
# examples = [[f'{i}.png' for i in range(0,3)], [f'{i}.png' for i in range(3,6)], [f'{i}.png' for i in range(6,9)], '9.png']
|
| 81 |
+
examples = [['samples/0.png', 'samples/6.png', 'samples/2.png'], ['samples/1.png','samples/2.png', 'samples/3.png'],
|
| 82 |
+
['samples/4.png', 'samples/8.png', 'samples/7.png'], ['samples/8.png', 'samples/0.png', 'samples/9.png'],
|
| 83 |
+
['samples/5.png', 'samples/6.png', 'samples/3.png'], ['samples/7.png', 'samples/8.png', 'samples/9.png']]
|
| 84 |
+
)
|
| 85 |
+
gr_interface.launch(enable_queue=True, debug=True, inbrowser=True)
|
| 86 |
+
|
| 87 |
+
# gr_interface = gr.Interface(infer, input, output, examples=examples, allow_flagging=False, analytics_enabled=False, title=title, description=description).launch(enable_queue=True, debug=False)
|
| 88 |
+
# gr_interface.launch()
|